BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31406331)

  • 1. Cephamycins inhibit pathogen sporulation and effectively treat recurrent Clostridioides difficile infection.
    Srikhanta YN; Hutton ML; Awad MM; Drinkwater N; Singleton J; Day SL; Cunningham BA; McGowan S; Lyras D
    Nat Microbiol; 2019 Dec; 4(12):2237-2245. PubMed ID: 31406331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fidaxomicin inhibits spore production in Clostridium difficile.
    Babakhani F; Bouillaut L; Gomez A; Sears P; Nguyen L; Sonenshein AL
    Clin Infect Dis; 2012 Aug; 55 Suppl 2(Suppl 2):S162-9. PubMed ID: 22752866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of spores to prevent the recurrence of Clostridioides difficile infection - A possibility or an improbability?
    Chiu CW; Tsai PJ; Lee CC; Ko WC; Hung YP
    J Microbiol Immunol Infect; 2021 Dec; 54(6):1011-1017. PubMed ID: 34229970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo antibacterial evaluation of cadazolid, a new antibiotic for treatment of Clostridium difficile infections.
    Locher HH; Seiler P; Chen X; Schroeder S; Pfaff P; Enderlin M; Klenk A; Fournier E; Hubschwerlen C; Ritz D; Kelly CP; Keck W
    Antimicrob Agents Chemother; 2014; 58(2):892-900. PubMed ID: 24277020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate of ingested Clostridium difficile spores in mice.
    Howerton A; Patra M; Abel-Santos E
    PLoS One; 2013; 8(8):e72620. PubMed ID: 24023628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The early stage peptidoglycan biosynthesis Mur enzymes are antibacterial and antisporulation drug targets for recurrent Clostridioides difficile infection.
    Sapkota M; Marreddy RKR; Wu X; Kumar M; Hurdle JG
    Anaerobe; 2020 Feb; 61():102129. PubMed ID: 31760080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile.
    Edwards AN; Nawrocki KL; McBride SM
    Infect Immun; 2014 Oct; 82(10):4276-91. PubMed ID: 25069979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of antibiotic to induce Clostridioides difficile-susceptibility and infectious strain in a mouse model of Clostridioides difficile infection and recurrence.
    Castro-Córdova P; Díaz-Yáñez F; Muñoz-Miralles J; Gil F; Paredes-Sabja D
    Anaerobe; 2020 Apr; 62():102149. PubMed ID: 31940467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, Synthesis, and Evaluation of Cephamycin-Based Antisporulation Agents targeting
    Cun WY; Bate CE; Srikhanta YN; Hutton ML; Webb CT; Revitt-Mills SA; Lyras D; McGowan S; Yu H; Keller PA; Pyne SG
    J Med Chem; 2024 Jan; 67(1):450-466. PubMed ID: 38112278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tigecycline suppresses toxin A and B production and sporulation in Clostridium difficile.
    Aldape MJ; Heeney DD; Bryant AE; Stevens DL
    J Antimicrob Chemother; 2015 Jan; 70(1):153-9. PubMed ID: 25151204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the impact of rpoB mutations on the in vitro and in vivo competitive fitness of Clostridium difficile and susceptibility to fidaxomicin.
    Kuehne SA; Dempster AW; Collery MM; Joshi N; Jowett J; Kelly ML; Cave R; Longshaw CM; Minton NP
    J Antimicrob Chemother; 2018 Apr; 73(4):973-980. PubMed ID: 29253242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Both fidaxomicin and vancomycin inhibit outgrowth of Clostridium difficile spores.
    Allen CA; Babakhani F; Sears P; Nguyen L; Sorg JA
    Antimicrob Agents Chemother; 2013 Jan; 57(1):664-7. PubMed ID: 23147724
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Zhu D; Sorg JA; Sun X
    Front Cell Infect Microbiol; 2018; 8():29. PubMed ID: 29473021
    [No Abstract]   [Full Text] [Related]  

  • 14. A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity.
    Gebhart D; Lok S; Clare S; Tomas M; Stares M; Scholl D; Donskey CJ; Lawley TD; Govoni GR
    mBio; 2015 Mar; 6(2):. PubMed ID: 25805733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducing and Quantifying Clostridium difficile Spore Formation.
    Shen A; Fimlaid KA; Pishdadian K
    Methods Mol Biol; 2016; 1476():129-42. PubMed ID: 27507338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Chicken IgY Specific to
    Pizarro-Guajardo M; Díaz-González F; Álvarez-Lobos M; Paredes-Sabja D
    Front Cell Infect Microbiol; 2017; 7():365. PubMed ID: 28856119
    [No Abstract]   [Full Text] [Related]  

  • 17. The Transcriptional Regulator Lrp Contributes to Toxin Expression, Sporulation, and Swimming Motility in
    Chen KY; Rathod J; Chiu YC; Chen JW; Tsai PJ; Huang IH
    Front Cell Infect Microbiol; 2019; 9():356. PubMed ID: 31681632
    [No Abstract]   [Full Text] [Related]  

  • 18. A cortex-specific penicillin-binding protein contributes to heat resistance in Clostridioides difficile spores.
    Alabdali YAJ; Oatley P; Kirk JA; Fagan RP
    Anaerobe; 2021 Aug; 70():102379. PubMed ID: 33940167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vitro Investigation of Auranofin as a Treatment for Clostridium difficile Infection.
    Roder C; Athan E
    Drugs R D; 2020 Sep; 20(3):209-216. PubMed ID: 32377889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevention of Clostridium difficile spore formation by sub-inhibitory concentrations of tigecycline and piperacillin/tazobactam.
    Garneau JR; Valiquette L; Fortier LC
    BMC Infect Dis; 2014 Jan; 14():29. PubMed ID: 24422950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.