BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31406371)

  • 1. A split CRISPR-Cpf1 platform for inducible genome editing and gene activation.
    Nihongaki Y; Otabe T; Ueda Y; Sato M
    Nat Chem Biol; 2019 Sep; 15(9):882-888. PubMed ID: 31406371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Split CRISPR-Cpf1 Platform for Inducible Gene Activation.
    Otabe T; Nihongaki Y; Sato M
    Methods Mol Biol; 2023; 2577():229-240. PubMed ID: 36173577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and assessment of engineered CRISPR-Cpf1 and its use for genome editing.
    Li B; Zeng C; Dong Y
    Nat Protoc; 2018 May; 13(5):899-914. PubMed ID: 29622802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of the CRISPR-Cpf1 system with ribozyme-processed crRNA.
    Gao Z; Herrera-Carrillo E; Berkhout B
    RNA Biol; 2018; 15(12):1458-1467. PubMed ID: 30470168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

  • 6. The Conspicuity of CRISPR-Cpf1 System as a Significant Breakthrough in Genome Editing.
    Bayat H; Modarressi MH; Rahimpour A
    Curr Microbiol; 2018 Jan; 75(1):107-115. PubMed ID: 29189942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants.
    Tang X; Lowder LG; Zhang T; Malzahn AA; Zheng X; Voytas DF; Zhong Z; Chen Y; Ren Q; Li Q; Kirkland ER; Zhang Y; Qi Y
    Nat Plants; 2017 Feb; 3():17018. PubMed ID: 28211909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cpf1-mediated DNA-free plant genome editing.
    Kim H; Kim ST; Ryu J; Kang BC; Kim JS; Kim SG
    Nat Commun; 2017 Feb; 8():14406. PubMed ID: 28205546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo high-throughput profiling of CRISPR-Cpf1 activity.
    Kim HK; Song M; Lee J; Menon AV; Jung S; Kang YM; Choi JW; Woo E; Koh HC; Nam JW; Kim H
    Nat Methods; 2017 Feb; 14(2):153-159. PubMed ID: 27992409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.
    Kim D; Kim J; Hur JK; Been KW; Yoon SH; Kim JS
    Nat Biotechnol; 2016 Aug; 34(8):863-8. PubMed ID: 27272384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The new generation tool for CRISPR genome editing: CRISPR/Cpf1].
    Yang F; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2017 Mar; 33(3):361-371. PubMed ID: 28941336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Markerless genome editing in Clostridium beijerinckii using the CRISPR-Cpf1 system.
    Zhang J; Hong W; Zong W; Wang P; Wang Y
    J Biotechnol; 2018 Oct; 284():27-30. PubMed ID: 30081040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum.
    Jiang Y; Qian F; Yang J; Liu Y; Dong F; Xu C; Sun B; Chen B; Xu X; Li Y; Wang R; Yang S
    Nat Commun; 2017 May; 8():15179. PubMed ID: 28469274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cpf1-mediated genome editing and gene regulation in human cells.
    Li T; Zhu L; Xiao B; Gong Z; Liao Q; Guo J
    Biotechnol Adv; 2019; 37(1):21-27. PubMed ID: 30399413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient targeted DNA editing and replacement in
    Ferenczi A; Pyott DE; Xipnitou A; Molnar A
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13567-13572. PubMed ID: 29208717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplexed CRISPR-Cpf1-Mediated Genome Editing in Clostridium difficile toward the Understanding of Pathogenesis of C. difficile Infection.
    Hong W; Zhang J; Cui G; Wang L; Wang Y
    ACS Synth Biol; 2018 Jun; 7(6):1588-1600. PubMed ID: 29863336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted mutagenesis in rice using CRISPR-Cpf1 system.
    Hu X; Wang C; Liu Q; Fu Y; Wang K
    J Genet Genomics; 2017 Jan; 44(1):71-73. PubMed ID: 28043782
    [No Abstract]   [Full Text] [Related]  

  • 18. Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors.
    Tak YE; Kleinstiver BP; Nuñez JK; Hsu JY; Horng JE; Gong J; Weissman JS; Joung JK
    Nat Methods; 2017 Dec; 14(12):1163-1166. PubMed ID: 29083402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cpf1: A New Tool for Plant Genome Editing.
    Zaidi SS; Mahfouz MM; Mansoor S
    Trends Plant Sci; 2017 Jul; 22(7):550-553. PubMed ID: 28532598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CAMERS-B: CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis.
    Wu Y; Liu Y; Lv X; Li J; Du G; Liu L
    Biotechnol Bioeng; 2020 Jun; 117(6):1817-1825. PubMed ID: 32129468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.