These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31406696)

  • 21. Advances and challenges in the development and production of effective plant-based influenza vaccines.
    Yusibov V; Kushnir N; Streatfield SJ
    Expert Rev Vaccines; 2015 Apr; 14(4):519-35. PubMed ID: 25487788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Old and new prescriptions for infectious diseases and the newest recipes for biomedical products in plants].
    Koprowski H
    Arch Immunol Ther Exp (Warsz); 2002; 50(6):365-9. PubMed ID: 12549429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrating plant molecular farming and materials research for next-generation vaccines.
    Chung YH; Church D; Koellhoffer EC; Osota E; Shukla S; Rybicki EP; Pokorski JK; Steinmetz NF
    Nat Rev Mater; 2022; 7(5):372-388. PubMed ID: 34900343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant-produced Recombinant Influenza A Vaccines Based on the M2e Peptide.
    Mardanova ES; Ravin NV
    Curr Pharm Des; 2018; 24(12):1317-1324. PubMed ID: 29521217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plant-based vaccine candidate against Infectious bursal disease: An alternative to inactivated vaccines for breeder hens.
    Lucero MS; Richetta M; Chimeno Zoth S; Jaton J; Pinto S; Canet Z; Berinstein A; Gómez E
    Vaccine; 2019 Aug; 37(36):5203-5210. PubMed ID: 31351795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Green factory: plants as bioproduction platforms for recombinant proteins.
    Xu J; Dolan MC; Medrano G; Cramer CL; Weathers PJ
    Biotechnol Adv; 2012; 30(5):1171-84. PubMed ID: 21924345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developing Vaccines Against Foot-and-Mouth Disease: a Biotechnological Approach.
    Shahriari A; Habibi-Pirkoohi M
    Arch Razi Inst; 2018 Dec; 73(1):1-10. PubMed ID: 30256033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Plant-Produced Candidate Subunit Vaccine Reduces Shedding of Enterohemorrhagic Escherichia coli in Ruminants.
    Miletic S; Hünerberg M; Kaldis A; MacDonald J; Leuthreau A; McAllister T; Menassa R
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28869356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimising expression and extraction of recombinant proteins in plants.
    Coates RJ; Young MT; Scofield S
    Front Plant Sci; 2022; 13():1074531. PubMed ID: 36570881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of antibodies in plants: approaches and perspectives.
    Ko K; Brodzik R; Steplewski Z
    Curr Top Microbiol Immunol; 2009; 332():55-78. PubMed ID: 19401821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of heterologous proteins in plants: strategies for optimal expression.
    Desai PN; Shrivastava N; Padh H
    Biotechnol Adv; 2010; 28(4):427-35. PubMed ID: 20152894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plant expression systems for production of hemagglutinin as a vaccine against influenza virus.
    Redkiewicz P; Sirko A; Kamel KA; Góra-Sochacka A
    Acta Biochim Pol; 2014; 61(3):551-60. PubMed ID: 25203219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of vaccines and therapeutic antibodies for veterinary applications in transgenic plants: an overview.
    Floss DM; Falkenburg D; Conrad U
    Transgenic Res; 2007 Jun; 16(3):315-32. PubMed ID: 17436059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vaccine manufacturing and technology: from biotechnological platforms to syntethic epitopes, current viepoint.
    Ignateva GA
    Patol Fiziol Eksp Ter; 2016; 60(4):143-7. PubMed ID: 29244936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant-made E2 glycoprotein single-dose vaccine protects pigs against classical swine fever.
    Laughlin RC; Madera R; Peres Y; Berquist BR; Wang L; Buist S; Burakova Y; Palle S; Chung CJ; Rasmussen MV; Martel E; Brake DA; Neilan JG; Lawhon SD; Adams LG; Shi J; Marcel S
    Plant Biotechnol J; 2019 Feb; 17(2):410-420. PubMed ID: 29993179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Induction of a dwarf phenotype with IBH1 may enable increased production of plant-made pharmaceuticals in plant factory conditions.
    Nagatoshi Y; Ikeda M; Kishi H; Hiratsu K; Muraguchi A; Ohme-Takagi M
    Plant Biotechnol J; 2016 Mar; 14(3):887-94. PubMed ID: 26190496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel transgenic rice-based vaccines.
    Azegami T; Itoh H; Kiyono H; Yuki Y
    Arch Immunol Ther Exp (Warsz); 2015 Apr; 63(2):87-99. PubMed ID: 25027548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plant Platforms for Efficient Heterologous Protein Production.
    Ghag SB; Adki VS; Ganapathi TR; Bapat VA
    Biotechnol Bioprocess Eng; 2021; 26(4):546-567. PubMed ID: 34393545
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules.
    Legastelois I; Buffin S; Peubez I; Mignon C; Sodoyer R; Werle B
    Hum Vaccin Immunother; 2017 Apr; 13(4):947-961. PubMed ID: 27905833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hairy roots as a vaccine production and delivery system.
    Skarjinskaia M; Ruby K; Araujo A; Taylor K; Gopalasamy-Raju V; Musiychuk K; Chichester JA; Palmer GA; de la Rosa P; Mett V; Ugulava N; Streatfield SJ; Yusibov V
    Adv Biochem Eng Biotechnol; 2013; 134():115-34. PubMed ID: 23649385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.