These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31407027)

  • 41. The Presence of a Paretic Propulsion Reserve During Gait in Individuals Following Stroke.
    Lewek MD; Raiti C; Doty A
    Neurorehabil Neural Repair; 2018 Dec; 32(12):1011-1019. PubMed ID: 30558525
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biomechanical gait characteristics of naturally occurring unsuccessful foot clearance during swing in individuals with chronic stroke.
    Burpee JL; Lewek MD
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1102-7. PubMed ID: 26371855
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of three kinematic gait event detection methods during overground and treadmill walking for individuals post stroke.
    French MA; Koller C; Arch ES
    J Biomech; 2020 Jan; 99():109481. PubMed ID: 31718818
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ankle-targeted exosuit resistance increases paretic propulsion in people post-stroke.
    Swaminathan K; Porciuncula F; Park S; Kannan H; Erard J; Wendel N; Baker T; Ellis TD; Awad LN; Walsh CJ
    J Neuroeng Rehabil; 2023 Jun; 20(1):85. PubMed ID: 37391851
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Speed and temporal-distance adaptations during treadmill and overground walking following stroke.
    Bayat R; Barbeau H; Lamontagne A
    Neurorehabil Neural Repair; 2005 Jun; 19(2):115-24. PubMed ID: 15883355
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Timing of propulsion-related biomechanical variables is impaired in individuals with post-stroke hemiparesis.
    Alam Z; Rendos NK; Vargas AM; Makanjuola J; Kesar TM
    Gait Posture; 2022 Jul; 96():275-278. PubMed ID: 35716486
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Locomotor Adaptability Task Promotes Intense and Task-Appropriate Output From the Paretic Leg During Walking.
    Clark DJ; Neptune RR; Behrman AL; Kautz SA
    Arch Phys Med Rehabil; 2016 Mar; 97(3):493-6. PubMed ID: 26525528
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke.
    Genthe K; Schenck C; Eicholtz S; Zajac-Cox L; Wolf S; Kesar TM
    Top Stroke Rehabil; 2018 Apr; 25(3):186-193. PubMed ID: 29457532
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait.
    Kesar TM; Reisman DS; Perumal R; Jancosko AM; Higginson JS; Rudolph KS; Binder-Macleod SA
    Gait Posture; 2011 Feb; 33(2):309-13. PubMed ID: 21183351
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of speed adaptation while walking on an omnidirectional treadmill.
    Soni S; Lamontagne A
    J Neuroeng Rehabil; 2020 Nov; 17(1):153. PubMed ID: 33228761
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of the Immediate Effects of Audio, Visual, or Audiovisual Gait Biofeedback on Propulsive Force Generation in Able-Bodied and Post-stroke Individuals.
    Liu J; Kim HB; Wolf SL; Kesar TM
    Appl Psychophysiol Biofeedback; 2020 Sep; 45(3):211-220. PubMed ID: 32347399
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance.
    Allen JL; Kautz SA; Neptune RR
    Clin Biomech (Bristol, Avon); 2013 Jul; 28(6):697-704. PubMed ID: 23830138
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of unilateral real-time biofeedback on propulsive forces during gait.
    Schenck C; Kesar TM
    J Neuroeng Rehabil; 2017 Jun; 14(1):52. PubMed ID: 28583196
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effects of unilateral step training and conventional treadmill training on gait asymmetry in patients with chronic stroke.
    Smith MC; Stinear J; Stinear CM
    Gait Posture; 2021 Jun; 87():156-162. PubMed ID: 33933934
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Locomotor adaptation to resistance during treadmill training transfers to overground walking in human SCI.
    Yen SC; Schmit BD; Landry JM; Roth H; Wu M
    Exp Brain Res; 2012 Feb; 216(3):473-82. PubMed ID: 22108702
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparison of treadmill walking and overground walking in independently ambulant stroke patients: a pilot study.
    Puh U; Baer GD
    Disabil Rehabil; 2009; 31(3):202-10. PubMed ID: 18608434
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Forward propulsion asymmetry is indicative of changes in plantarflexor coordination during walking in individuals with post-stroke hemiparesis.
    Allen JL; Kautz SA; Neptune RR
    Clin Biomech (Bristol, Avon); 2014 Aug; 29(7):780-6. PubMed ID: 24973825
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ankle-foot orthosis with dorsiflexion resistance using spring-cam mechanism increases knee flexion in the swing phase during walking in stroke patients with hemiplegia.
    Sekiguchi Y; Owaki D; Honda K; Fukushi K; Hiroi N; Nozaki T; Izumi SI
    Gait Posture; 2020 Sep; 81():27-32. PubMed ID: 32652487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.