These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31407203)

  • 1. Detection of chemical exchange in methyl groups of macromolecules.
    Gill ML; Hsu A; Palmer AG
    J Biomol NMR; 2019 Sep; 73(8-9):443-450. PubMed ID: 31407203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplet-filtered and gradient-selected zero-quantum TROSY experiments for 13C1H3 methyl groups in proteins.
    Gill ML; Palmer AG
    J Biomol NMR; 2011 Nov; 51(3):245-51. PubMed ID: 21918814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple time scale backbone dynamics of homologous thermophilic and mesophilic ribonuclease HI enzymes.
    Butterwick JA; Loria JP; Astrof NS; Kroenke CD; Cole R; Rance M; Palmer AG
    J Mol Biol; 2004 Jun; 339(4):855-71. PubMed ID: 15165855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An effective method for the discrimination of motional anisotropy and chemical exchange.
    Kneller JM; Lu M; Bracken C
    J Am Chem Soc; 2002 Mar; 124(9):1852-3. PubMed ID: 11866588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme dynamics from NMR spectroscopy.
    Palmer AG
    Acc Chem Res; 2015 Feb; 48(2):457-65. PubMed ID: 25574774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping chemical exchange in proteins with MW > 50 kD.
    Wang C; Rance M; Palmer AG
    J Am Chem Soc; 2003 Jul; 125(30):8968-9. PubMed ID: 15369325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TROSY-based NMR experiments for the study of macromolecular dynamics and hydrogen bonding.
    Zhu G; Xia Y; Lin D; Gao X
    Methods Mol Biol; 2004; 278():161-84. PubMed ID: 15317997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of conformational exchange contributions to 1H-15N multiple-quantum relaxation using field-dependent measurements. Time scale and structural characterization of exchange in a calmodulin C-terminal domain mutant.
    Lundström P; Akke M
    J Am Chem Soc; 2004 Jan; 126(3):928-35. PubMed ID: 14733570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of TROSY for detection and suppression of conformational exchange NMR line broadening in biological macromolecules.
    Pervushin K
    J Biomol NMR; 2001 Jul; 20(3):275-85. PubMed ID: 11519750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced spectral density mapping through combined multiple-field deuterium
    Hsu A; O'Brien PA; Bhattacharya S; Rance M; Palmer AG
    Methods; 2018 Apr; 138-139():76-84. PubMed ID: 29288801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of conformational exchange processes using methyl-TROSY-based Hahn echo measurements of quadruple-quantum relaxation.
    Waudby CA; Christodoulou J
    Magn Reson (Gott); 2021; 2(2):777-793. PubMed ID: 37905227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1H,13C-1H,1H dipolar cross-correlated spin relaxation in methyl groups.
    Tugarinov V; Kay LE
    J Biomol NMR; 2004 Jul; 29(3):369-76. PubMed ID: 15213435
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Kumari P; Frey L; Sobol A; Lakomek NA; Riek R
    J Biomol NMR; 2018 Dec; 72(3-4):125-137. PubMed ID: 30306288
    [No Abstract]   [Full Text] [Related]  

  • 14. Dynamics of ribonuclease H: temperature dependence of motions on multiple time scales.
    Mandel AM; Akke M; Palmer AG
    Biochemistry; 1996 Dec; 35(50):16009-23. PubMed ID: 8973171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural stability and internal motions of Escherichia coli ribonuclease HI: 15N relaxation and hydrogen-deuterium exchange analyses.
    Yamasaki K; Akasako-Furukawa A; Kanaya S
    J Mol Biol; 1998 Apr; 277(3):707-22. PubMed ID: 9533889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of correlated dynamics on multiple timescales by measurement of the differential relaxation of zero- and double-quantum coherences involving sidechain methyl groups in proteins.
    Del Rio A; Anand A; Ghose R
    J Magn Reson; 2006 May; 180(1):1-17. PubMed ID: 16473030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the signs of the methyl
    Gopalan AB; Vallurupalli P
    J Biomol NMR; 2018 Mar; 70(3):187-202. PubMed ID: 29564579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double- and zero-quantum NMR relaxation dispersion experiments sampling millisecond time scale dynamics in proteins.
    Orekhov VY; Korzhnev DM; Kay LE
    J Am Chem Soc; 2004 Feb; 126(6):1886-91. PubMed ID: 14871121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing Methyl Group Dynamics in Proteins by NMR Cross-Correlated Dipolar Relaxation and Molecular Dynamics Simulations.
    Ali AAAI; Hoffmann F; Schäfer LV; Mulder FAA
    J Chem Theory Comput; 2022 Dec; 18(12):7722-7732. PubMed ID: 36326619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TROSY experiment for refinement of backbone psi and phi by simultaneous measurements of cross-correlated relaxation rates and 3,4J(H alpha HN) coupling constants.
    Vögeli B; Pervushin K
    J Biomol NMR; 2002 Dec; 24(4):291-300. PubMed ID: 12522294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.