These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 31407389)
1. Design, synthesis, biological evaluation, and molecular modeling studies of rhodanine derivatives as pancreatic lipase inhibitors. Chauhan D; George G; Sridhar SNC; Bhatia R; Paul AT; Monga V Arch Pharm (Weinheim); 2019 Oct; 352(10):e1900029. PubMed ID: 31407389 [TBL] [Abstract][Full Text] [Related]
2. Design, synthesis, biological evaluation and molecular modelling studies of novel diaryl substituted pyrazolyl thiazolidinediones as potent pancreatic lipase inhibitors. S N C S; Bhurta D; Kantiwal D; George G; Monga V; Paul AT Bioorg Med Chem Lett; 2017 Aug; 27(16):3749-3754. PubMed ID: 28705641 [TBL] [Abstract][Full Text] [Related]
3. Design, synthesis, biological evaluation and molecular modelling studies of indole glyoxylamides as a new class of potential pancreatic lipase inhibitors. Sridhar SNC; Palawat S; Paul AT Bioorg Chem; 2019 Apr; 85():373-381. PubMed ID: 30658237 [TBL] [Abstract][Full Text] [Related]
4. Design, synthesis, evaluation, and molecular modeling studies of indolyl oxoacetamides as potential pancreatic lipase inhibitors. Sridhar SNC; Palawat S; Paul AT Arch Pharm (Weinheim); 2020 Aug; 353(8):e2000048. PubMed ID: 32484265 [TBL] [Abstract][Full Text] [Related]
5. Design, synthesis and biological evaluation of N-substituted indole-thiazolidinedione analogues as potential pancreatic lipase inhibitors. George G; Auti PS; Paul AT Chem Biol Drug Des; 2021 Jul; 98(1):49-59. PubMed ID: 33864339 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Ahn JH; Kim SJ; Park WS; Cho SY; Ha JD; Kim SS; Kang SK; Jeong DG; Jung SK; Lee SH; Kim HM; Park SK; Lee KH; Lee CW; Ryu SE; Choi JK Bioorg Med Chem Lett; 2006 Jun; 16(11):2996-9. PubMed ID: 16530413 [TBL] [Abstract][Full Text] [Related]
7. Design, Synthesis, Molecular Modelling and in Vitro Evaluation of Indolyl Ketohydrazide-Hydrazone Analogs as Potential Pancreatic Lipase Inhibitors. Jagetiya S; Auti PS; Paul AT Chem Biodivers; 2023 Sep; 20(9):e202301154. PubMed ID: 37611116 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, molecular modelling, S N C S; Sengupta P; Palawat S; P S D; George G; Paul AT J Biomol Struct Dyn; 2022; 40(19):9530-9542. PubMed ID: 34032197 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, evaluation and molecular modelling studies of 2-(carbazol-3-yl)-2-oxoacetamide analogues as a new class of potential pancreatic lipase inhibitors. Sridhar SN; Ginson G; Venkataramana Reddy PO; Tantak MP; Kumar D; Paul AT Bioorg Med Chem; 2017 Jan; 25(2):609-620. PubMed ID: 27908755 [TBL] [Abstract][Full Text] [Related]
10. Quinazolinone-based rhodanine-3-acetic acids as potent aldose reductase inhibitors: Synthesis, functional evaluation and molecular modeling study. El-Sayed S; Metwally K; El-Shanawani AA; Abdel-Aziz LM; El-Rashedy AA; Soliman MES; Quattrini L; Coviello V; la Motta C Bioorg Med Chem Lett; 2017 Oct; 27(20):4760-4764. PubMed ID: 28935265 [TBL] [Abstract][Full Text] [Related]
11. Design, synthesis and biological evaluation of novel chalcone-like compounds as potent and reversible pancreatic lipase inhibitors. Huo PC; Hu Q; Shu S; Zhou QH; He RJ; Hou J; Guan XQ; Tu DZ; Hou XD; Liu P; Zhang N; Liu ZG; Ge GB Bioorg Med Chem; 2021 Jan; 29():115853. PubMed ID: 33214035 [TBL] [Abstract][Full Text] [Related]
12. Discovery of triterpenoids as potent dual inhibitors of pancreatic lipase and human carboxylesterase 1. Zhang J; Pan QS; Qian XK; Zhou XL; Wang YJ; He RJ; Wang LT; Li YR; Huo H; Sun CG; Sun L; Zou LW; Yang L J Enzyme Inhib Med Chem; 2022 Dec; 37(1):629-640. PubMed ID: 35100926 [TBL] [Abstract][Full Text] [Related]
13. Biaryl carboxamide-based peptidomimetics analogs as potential pancreatic lipase inhibitors for treating obesity. Pandey V; Adhikrao PA; Motiram GM; Yadav N; Jagtap U; Kumar G; Paul A Arch Pharm (Weinheim); 2024 Apr; 357(4):e2300503. PubMed ID: 38251950 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of pancreatic lipase by the constituents in St. John's Wort: In vitro and in silico investigations. Hou XD; Guan XQ; Cao YF; Weng ZM; Hu Q; Liu HB; Jia SN; Zang SZ; Zhou Q; Yang L; Ge GB; Hou J Int J Biol Macromol; 2020 Feb; 145():620-633. PubMed ID: 31883893 [TBL] [Abstract][Full Text] [Related]
15. Design, Synthesis, and Structure-Activity Relationship Study of Pyrazolones as Potent Inhibitors of Pancreatic Lipase. Zhang J; Yang Y; Qian XK; Song PF; Zhao YS; Guan XQ; Zou LW; Bao X; Wang H ChemMedChem; 2021 May; 16(10):1600-1604. PubMed ID: 33527731 [TBL] [Abstract][Full Text] [Related]
16. Exploring Aurone Derivatives as Potential Human Pancreatic Lipase Inhibitors through Molecular Docking and Molecular Dynamics Simulations. Nguyen PTV; Huynh HA; Truong DV; Tran TD; Vo CT Molecules; 2020 Oct; 25(20):. PubMed ID: 33066044 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the inhibitory potential of five squaric acid derivatives against pancreatic lipase. Bobcheva Z; Zhiryakova D; Guncheva M J Enzyme Inhib Med Chem; 2011 Aug; 26(4):587-91. PubMed ID: 21438711 [TBL] [Abstract][Full Text] [Related]
18. Molecular modelling, synthesis and George G; Yadav N; Auti PS; Paul AT J Biomol Struct Dyn; 2023 Nov; 41(19):9583-9601. PubMed ID: 36350239 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and biological evaluation of tryptophan-derived rhodanine derivatives as PTP1B inhibitors and anti-bacterial agents. Liu H; Sun D; Du H; Zheng C; Li J; Piao H; Li J; Sun L Eur J Med Chem; 2019 Jun; 172():163-173. PubMed ID: 30978561 [TBL] [Abstract][Full Text] [Related]
20. Rhodanine derivatives as inhibitors of JSP-1. Cutshall NS; O'Day C; Prezhdo M Bioorg Med Chem Lett; 2005 Jul; 15(14):3374-9. PubMed ID: 15961311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]