These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31407755)

  • 21. Recent Advances and Perspectives on the Polymer Electrolytes for Sodium/Potassium-Ion Batteries.
    Yin H; Han C; Liu Q; Wu F; Zhang F; Tang Y
    Small; 2021 Aug; 17(31):e2006627. PubMed ID: 34047049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active material and interphase structures governing performance in sodium and potassium ion batteries.
    Kim EJ; Kumar PR; Gossage ZT; Kubota K; Hosaka T; Tatara R; Komaba S
    Chem Sci; 2022 Jun; 13(21):6121-6158. PubMed ID: 35733881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential application of 2D monolayer β-GeSe as an anode material in Na/K ion batteries.
    Zhou Y; Zhao M; Chen ZW; Shi XM; Jiang Q
    Phys Chem Chem Phys; 2018 Dec; 20(48):30290-30296. PubMed ID: 30484448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrode Nanomaterials for Room Temperature Sodium-Ion Batteries: A Review.
    Huang L; Cheng J; Li X; Wang B
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6295-307. PubMed ID: 26716186
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the Effect of Interplanar Space and Preintercalated Cations of Vanadate Cathode Materials on Potassium-Ion Battery Performance.
    Fan Y; Qu Z; Zhong W; Hu Z; Younus HA; Yang C; Wang X; Zhang S
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7377-7388. PubMed ID: 33550798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. State-of-the-art anodes of potassium-ion batteries: synthesis, chemistry, and applications.
    Li P; Kim H; Kim KH; Kim J; Jung HG; Sun YK
    Chem Sci; 2021 May; 12(22):7623-7655. PubMed ID: 34168818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sodium-ion batteries: present and future.
    Hwang JY; Myung ST; Sun YK
    Chem Soc Rev; 2017 Jun; 46(12):3529-3614. PubMed ID: 28349134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Challenges and prospects of polyatomic ions' intercalation in the graphite layer for energy storage applications.
    Patil SB; Liao HJ; Wang DY
    Phys Chem Chem Phys; 2020 Nov; 22(43):24842-24855. PubMed ID: 33125020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Performance Cathode Materials for Potassium-Ion Batteries: Structural Design and Electrochemical Properties.
    Xu YS; Guo SJ; Tao XS; Sun YG; Ma J; Liu C; Cao AM
    Adv Mater; 2021 Sep; 33(36):e2100409. PubMed ID: 34270806
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances and promise of MXene-based composites as electrode materials for sodium-ion and potassium-ion batteries.
    Zhang Y; Ni G; Li Y; Xu C; Li D; Liu B; Zhang X; Huo P
    Dalton Trans; 2023 Dec; 53(1):15-32. PubMed ID: 38018446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal-Organic Framework-Based Materials for Advanced Sodium Storage: Development and Anticipation.
    Zhou JE; Reddy RCK; Zhong A; Li Y; Huang Q; Lin X; Qian J; Yang C; Manke I; Chen R
    Adv Mater; 2024 Apr; 36(16):e2312471. PubMed ID: 38193792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible Sub-Micro Carbon Fiber@CNTs as Anodes for Potassium-Ion Batteries.
    Shen C; Yuan K; Tian T; Bai M; Wang JG; Li X; Xie K; Fu QG; Wei B
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5015-5021. PubMed ID: 30620175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strategies for developing layered oxide cathodes, carbon-based anodes, and electrolytes for potassium ion batteries.
    Lin Y; Luo S; Cong J; Li P; Yuan X; Yan S
    Mater Horiz; 2024 May; 11(9):2053-2076. PubMed ID: 38384236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Covalent Organic Frameworks as Electrode Materials for Metal Ion Batteries: A Current Review.
    Wang Z; Jin W; Huang X; Lu G; Li Y
    Chem Rec; 2020 Oct; 20(10):1198-1219. PubMed ID: 32881320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced electrochemical properties of SnO
    Huang Z; Chen Z; Ding S; Chen C; Zhang M
    Nanotechnology; 2018 Sep; 29(37):375702. PubMed ID: 29926805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications.
    Feng K; Li M; Liu W; Kashkooli AG; Xiao X; Cai M; Chen Z
    Small; 2018 Feb; 14(8):. PubMed ID: 29356411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-dimensional MnC as a potential anode material for Na/K-ion batteries: a theoretical study.
    Chen Q; Wang H; Li H; Duan Q; Jiang D; Hou J
    J Mol Model; 2020 Mar; 26(4):66. PubMed ID: 32130531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iodine encapsulated in mesoporous carbon enabling high-efficiency capacitive potassium-Ion storage.
    Qian M; Tang M; Yang J; Wei W; Chen M; Chen J; Xu J; Liu Q; Wang H
    J Colloid Interface Sci; 2019 Sep; 551():177-183. PubMed ID: 31078099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage.
    Yan L; Rui X; Chen G; Xu W; Zou G; Luo H
    Nanoscale; 2016 Apr; 8(16):8443-65. PubMed ID: 27074412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.