BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 3140782)

  • 21. Mapping the site(s) of MgATP and MgADP interaction with the nitrogenase of Azotobacter vinelandii. Lysine 15 of the iron protein plays a major role in MgATP interaction.
    Seefeldt LC; Morgan TV; Dean DR; Mortenson LE
    J Biol Chem; 1992 Apr; 267(10):6680-8. PubMed ID: 1313018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elucidating the mechanism of nucleotide-dependent changes in the redox potential of the [4Fe-4S] cluster in nitrogenase iron protein: the role of phenylalanine 135.
    Ryle MJ; Lanzilotta WN; Seefeldt LC
    Biochemistry; 1996 Jul; 35(29):9424-34. PubMed ID: 8755721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidation of a MgATP signal transduction pathway in the nitrogenase iron protein: formation of a conformation resembling the MgATP-bound state by protein engineering.
    Ryle MJ; Seefeldt LC
    Biochemistry; 1996 Apr; 35(15):4766-75. PubMed ID: 8664266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP.
    Lanzilotta WN; Parker VD; Seefeldt LC
    Biochemistry; 1998 Jan; 37(1):399-407. PubMed ID: 9425061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Substitution of histidine for arginine-101 of dinitrogenase reductase disrupts electron transfer to dinitrogenase.
    Lowery RG; Chang CL; Davis LC; McKenna MC; Stephens PJ; Ludden PW
    Biochemistry; 1989 Feb; 28(3):1206-12. PubMed ID: 2540818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence that MgATP accelerates primary electron transfer in a Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein nitrogenase tight complex.
    Chan JM; Ryle MJ; Seefeldt LC
    J Biol Chem; 1999 Jun; 274(25):17593-8. PubMed ID: 10364195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of all stages of electron transfer in nitrogenase in the presence of a photodonor.
    Syrtsova LA; Nadtochenko VA; Timofeeva EA
    Biochemistry (Mosc); 1998 Aug; 63(8):1007-13. PubMed ID: 9767192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrogenase of Klebsiella pneumoniae. Reversibility of the reductant-independent MgATP-cleavage reaction is shown by MgADP-catalysed phosphate/water oxygen exchange.
    Thorneley RN; Ashby GA; Julius C; Hunter JL; Webb MR
    Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):735-41. PubMed ID: 1872810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A modified flavodoxin with altered redox potentials is less efficient in electron transfer to nitrogenase.
    Hofstetter W; DerVartanian DV
    Biochem Biophys Res Commun; 1985 Apr; 128(2):643-9. PubMed ID: 3857914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of magnesium adenosine 5'-triphosphate in the hydrogen evolution reaction catalyzed by nitrogenase from Azotobacter vinelandii.
    Hageman RV; Orme-Johnson WH; Burris RH
    Biochemistry; 1980 May; 19(11):2333-42. PubMed ID: 6930302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy transduction by nitrogenase: binding of MgADP to the MoFe protein is dependent on the oxidation state of the iron-sulphur 'P' clusters.
    Miller RW; Smith BE; Eady RR
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):709-11. PubMed ID: 8489498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction and characterization of a heterodimeric iron protein: defining roles for adenosine triphosphate in nitrogenase catalysis.
    Chan JM; Wu W; Dean DR; Seefeldt LC
    Biochemistry; 2000 Jun; 39(24):7221-8. PubMed ID: 10852721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamics of nucleotide interactions with the Azotobacter vinelandii nitrogenase iron protein.
    Lanzilotta WN; Parker VD; Seefeldt LC
    Biochim Biophys Acta; 1999 Jan; 1429(2):411-21. PubMed ID: 9989226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unraveling the interactions of the physiological reductant flavodoxin with the different conformations of the Fe protein in the nitrogenase cycle.
    Pence N; Tokmina-Lukaszewska M; Yang ZY; Ledbetter RN; Seefeldt LC; Bothner B; Peters JW
    J Biol Chem; 2017 Sep; 292(38):15661-15669. PubMed ID: 28784660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogenase of Klebsiella pneumoniae. A stopped-flow study of magnesium-adenosine triphosphate-induce electron transfer between the compeonent proteins.
    Thorneley RN
    Biochem J; 1975 Feb; 145(2):391-6. PubMed ID: 1098654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-range interactions between the Fe protein binding sites of the MoFe protein of nitrogenase.
    Maritano S; Fairhurst SA; Eady RR
    J Biol Inorg Chem; 2001 Jun; 6(5-6):590-600. PubMed ID: 11472022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An all-ferrous state of the Fe protein of nitrogenase. Interaction with nucleotides and electron transfer to the MoFe protein.
    Angove HC; Yoo SJ; Münck E; Burgess BK
    J Biol Chem; 1998 Oct; 273(41):26330-7. PubMed ID: 9756863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalysis of exchange of terminal phosphate groups of ATP and ADP by purified nitrogenase proteins.
    Miller RW; Robson RL; Yates MG; Eady RR
    Can J Biochem; 1980 Jul; 58(7):542-8. PubMed ID: 7004607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39.
    Lanzilotta WN; Fisher K; Seefeldt LC
    J Biol Chem; 1997 Feb; 272(7):4157-65. PubMed ID: 9020128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iron-molybdenum cofactor insertion into the Apo-MoFe protein of nitrogenase involves the iron protein-MgATP complex.
    Robinson AC; Chun TW; Li JG; Burgess BK
    J Biol Chem; 1989 Jun; 264(17):10088-95. PubMed ID: 2785995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.