These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Microvasculature of the Optic Nerve Head and Peripapillary Region in Patients With Primary Open-Angle Glaucoma. Nascimento E Silva R; Chiou CA; Wang M; Wang H; Shoji MK; Chou JC; D'Souza EE; Greenstein SH; Brauner SC; Alves MR; Pasquale LR; Shen LQ J Glaucoma; 2019 Apr; 28(4):281-288. PubMed ID: 30585943 [TBL] [Abstract][Full Text] [Related]
4. Quantitative assessment of retinal thickness and vessel density using optical coherence tomography angiography in patients with Alzheimer's disease and glaucoma. Zabel P; Kaluzny JJ; Zabel K; Kaluzna M; Lamkowski A; Jaworski D; Makowski J; Gebska-Toloczko M; Kucharski R PLoS One; 2021; 16(3):e0248284. PubMed ID: 33739997 [TBL] [Abstract][Full Text] [Related]
5. Peripapillary and Macular Vessel Density in Patients with Primary Open-Angle Glaucoma and Unilateral Visual Field Loss. Yarmohammadi A; Zangwill LM; Manalastas PIC; Fuller NJ; Diniz-Filho A; Saunders LJ; Suh MH; Hasenstab K; Weinreb RN Ophthalmology; 2018 Apr; 125(4):578-587. PubMed ID: 29174012 [TBL] [Abstract][Full Text] [Related]
6. Peripapillary and Macular Vessel Density Measurement by Optical Coherence Tomography Angiography in Pseudoexfoliation and Primary Open-angle Glaucoma. Jo YH; Sung KR; Shin JW J Glaucoma; 2020 May; 29(5):381-385. PubMed ID: 32079991 [TBL] [Abstract][Full Text] [Related]
7. Diurnal variations in flow density measured using optical coherence tomography angiography and the impact of heart rate, mean arterial pressure and intraocular pressure on flow density in primary open-angle glaucoma patients. Müller VC; Storp JJ; Kerschke L; Nelis P; Eter N; Alnawaiseh M Acta Ophthalmol; 2019 Sep; 97(6):e844-e849. PubMed ID: 30900827 [TBL] [Abstract][Full Text] [Related]
8. A comparison of two optical coherence tomography-angiography devices in pseudoexfoliation glaucoma versus primary open-angle glaucoma and healthy subjects. Rebolleda G; Pérez-Sarriegui A; De Juan V; Ortiz-Toquero S; Muñoz-Negrete FJ Eur J Ophthalmol; 2019 Nov; 29(6):636-644. PubMed ID: 30318904 [TBL] [Abstract][Full Text] [Related]
9. Reduced Macular Vessel Density and Capillary Perfusion in Glaucoma Detected Using OCT Angiography. Wu J; Sebastian RT; Chu CJ; McGregor F; Dick AD; Liu L Curr Eye Res; 2019 May; 44(5):533-540. PubMed ID: 30577706 [TBL] [Abstract][Full Text] [Related]
10. Parapapillary Deep-Layer Microvasculature Dropout in Glaucoma: Topographic Association With Glaucomatous Damage. Lee EJ; Lee SH; Kim JA; Kim TW Invest Ophthalmol Vis Sci; 2017 Jun; 58(7):3004-3010. PubMed ID: 28605811 [TBL] [Abstract][Full Text] [Related]
11. Diagnostic ability of the combination of retinal microvasculature evaluation and static automated perimetry for early primary open-angle glaucoma. Xu S; Lin Z; Guo Y; Huang P; Huang S; Zhong Y Lasers Med Sci; 2024 Jun; 39(1):154. PubMed ID: 38862806 [TBL] [Abstract][Full Text] [Related]
12. Regional Comparisons of Optical Coherence Tomography Angiography Vessel Density in Primary Open-Angle Glaucoma. Rao HL; Pradhan ZS; Weinreb RN; Reddy HB; Riyazuddin M; Dasari S; Palakurthy M; Puttaiah NK; Rao DA; Webers CA Am J Ophthalmol; 2016 Nov; 171():75-83. PubMed ID: 27590118 [TBL] [Abstract][Full Text] [Related]
13. OCT Angiography of the Peripapillary Retina in Primary Open-Angle Glaucoma. Lee EJ; Lee KM; Lee SH; Kim TW Invest Ophthalmol Vis Sci; 2016 Nov; 57(14):6265-6270. PubMed ID: 27849312 [TBL] [Abstract][Full Text] [Related]
14. Comparison of Thickness-Function and Vessel Density-Function Relationship in the Superior and Inferior Macula, and in the Superotemporal and Inferotemporal Peripapillary Sectors. Holló G J Glaucoma; 2020 Mar; 29(3):168-174. PubMed ID: 31917720 [TBL] [Abstract][Full Text] [Related]
15. Automated Evaluation of Parapapillary Choroidal Microvasculature in Ischemic Optic Neuropathy and Open Angle Glaucoma. Aghsaei Fard M; Salabati M; Mahmoudzadeh R; Kafieh R; Hojati S; Safizadeh M; Moghimi S; Ritch R; Subramanian PS Invest Ophthalmol Vis Sci; 2020 Mar; 61(3):35. PubMed ID: 32191289 [TBL] [Abstract][Full Text] [Related]
16. Comparison of microvascular parameters and diagnostic ability of optical coherence tomography angiography between eyes with primary angle closure glaucoma and primary open angle glaucoma. Köse HC; Tekeli O Photodiagnosis Photodyn Ther; 2022 Dec; 40():103114. PubMed ID: 36096437 [TBL] [Abstract][Full Text] [Related]
17. Correlation of retinal sensitivity in microperimetry with vascular density in optical coherence tomography angiography in primary open-angle glaucoma. Zabel K; Zabel P; Kaluzna M; Lamkowski A; Jaworski D; Wietlicka-Piszcz M; Kaluzny JJ PLoS One; 2020; 15(7):e0235571. PubMed ID: 32628706 [TBL] [Abstract][Full Text] [Related]
18. Retinal Microcirculatory Responses to Hyperoxia in Primary Open-Angle Glaucoma Using Optical Coherence Tomography Angiography. Fan X; Xu H; Zhai R; Sheng Q; Kong X Invest Ophthalmol Vis Sci; 2021 Nov; 62(14):4. PubMed ID: 34730793 [TBL] [Abstract][Full Text] [Related]
19. Effect of brimonidine on vascular density and imagej-derived flow index of optic nerve head and macula in primary open angle glaucoma. Ameen Ismail A; Sadek S; Hatata R; Kamal M Int Ophthalmol; 2024 Jul; 44(1):311. PubMed ID: 38963456 [TBL] [Abstract][Full Text] [Related]
20. Assessment of Perfused Peripapillary Capillaries and Peripapillary Capillary Density Maps in Glaucoma Patients. Sefic S; Kasumovic A; Matoc I; Halimic T; Voloder B; Muhamedagic L; Delic SC; Sesar I Med Arch; 2020 Aug; 74(4):275-278. PubMed ID: 33041444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]