These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31408537)

  • 1. Generation of microbubbles in extracorporeal life support and assessment of new elimination strategies.
    Born F; König F; Chen J; Günther S; Hagl C; Thierfelder N
    Artif Organs; 2020 Mar; 44(3):268-277. PubMed ID: 31408537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential Danger of Pre-Pump Clamping on Negative Pressure-Associated Gaseous Microemboli Generation During Extracorporeal Life Support--An In Vitro Study.
    Wang S; Chin BJ; Gentile F; Kunselman AR; Palanzo D; Ündar A
    Artif Organs; 2016 Jan; 40(1):89-94. PubMed ID: 26153848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential impact of oxygenators with venous air trap on air embolism in veno-arterial Extracorporeal Life Support.
    Born F; Khaladj N; Pichlmaier M; Schramm R; Hagl C; Guenther SP
    Technol Health Care; 2017; 25(1):111-121. PubMed ID: 27497463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Combined Extracorporeal Life Support and Continuous Renal Replacement Therapy on Hemodynamic Performance and Gaseous Microemboli Handling Ability in a Simulated Neonatal ECLS System.
    Shank KR; Profeta E; Wang S; O'Connor C; Kunselman AR; Woitas K; Myers JL; Ündar A
    Artif Organs; 2018 Apr; 42(4):365-376. PubMed ID: 28940550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building a Better Neonatal Extracorporeal Life Support Circuit: Comparison of Hemodynamic Performance and Gaseous Microemboli Handling in Different Pump and Oxygenator Technologies.
    Glass K; Trivedi P; Wang S; Woitas K; Kunselman AR; Ündar A
    Artif Organs; 2017 Apr; 41(4):392-400. PubMed ID: 28397410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemolytic and thrombocytopathic characteristics of extracorporeal membrane oxygenation systems at simulated flow rate for neonates.
    Meyer AD; Wiles AA; Rivera O; Wong EC; Freishtat RJ; Rais-Bahrami K; Dalton HJ
    Pediatr Crit Care Med; 2012 Jul; 13(4):e255-61. PubMed ID: 22596067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical evaluation of the air removal characteristics of an oxygenator with integrated arterial filter in a minimized extracorporeal circuit.
    Stehouwer MC; Boers C; de Vroege R; C Kelder J; Yilmaz A; Bruins P
    Int J Artif Organs; 2011 Apr; 34(4):374-82. PubMed ID: 21534248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaseous microemboli and the influence of microporous membrane oxygenators.
    Weitkemper HH; Oppermann B; Spilker A; Knobl HJ; Körfer R
    J Extra Corpor Technol; 2005 Sep; 37(3):256-64. PubMed ID: 16350377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracorporeal life support systems: alternative vs. conventional circuits.
    Khan S; Vasavada R; Qiu F; Kunselman A; Undar A
    Perfusion; 2011 May; 26(3):191-8. PubMed ID: 21227982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro Comparison of Pediatric Oxygenators With and Without Integrated Arterial Filters in Maintaining Optimal Hemodynamic Stability and Managing Gaseous Microemboli.
    Moroi M; Force M; Wang S; Kunselman AR; Ündar A
    Artif Organs; 2018 Apr; 42(4):420-431. PubMed ID: 29377185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon Dioxide Flush of an Integrated Minimized Perfusion Circuit Prior to Priming Prevents Spontaneous Air Release Into the Arterial Line During Clinical Use.
    Stehouwer MC; de Vroege R; Hoohenkerk GJF; Hofman FN; Kelder JC; Buchner B; de Mol BA; Bruins P
    Artif Organs; 2017 Nov; 41(11):997-1003. PubMed ID: 28741663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vitro Evaluation of an Alternative Neonatal Extracorporeal Life Support Circuit on Hemodynamic Performance and Bubble Trap.
    Spencer SB; Wang S; Woitas K; Glass K; Kunselman AR; Ündar A
    Artif Organs; 2017 Jan; 41(1):17-24. PubMed ID: 27735070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does an Open Recirculation Line Affect the Flow Rate and Pressure in a Neonatal Extracorporeal Life Support Circuit With a Centrifugal or Roller Pump?
    Wang S; Spencer SB; Woitas K; Glass K; Kunselman AR; Ündar A
    Artif Organs; 2017 Jan; 41(1):70-75. PubMed ID: 27862035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro Comparison of Two Neonatal ECMO Circuits Using a Roller or Centrifugal Pump With Three Different In-Line Hemoconcentrators for Maintaining Hemodynamic Energy Delivery to the Patient.
    Force M; Moroi M; Wang S; Palanzo DA; Kunselman AR; Ündar A
    Artif Organs; 2018 Apr; 42(4):354-364. PubMed ID: 29323409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemostatic Complications During Neonatal Extracorporeal Membrane Oxygenation: Roller Pump and Centrifugal Pump Driven Circuits.
    Vermeer H; de Jong SF; Koers EJ; Peeters TLM; van der Lee R; de Boode WP; Morshuis WJ
    ASAIO J; 2023 Jun; 69(6):618-624. PubMed ID: 36574471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory Evaluation of Hemolysis and Systemic Inflammatory Response in Neonatal Nonpulsatile and Pulsatile Extracorporeal Life Support Systems.
    Wang S; Krawiec C; Patel S; Kunselman AR; Song J; Lei F; Baer LD; Ündar A
    Artif Organs; 2015 Sep; 39(9):774-81. PubMed ID: 25940752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of conventional nonpulsatile and novel pulsatile extracorporeal life support systems in a simulated pediatric extracorporeal life support model.
    Wang S; Evenson A; Chin BJ; Kunselman AR; Ündar A
    Artif Organs; 2015 Jan; 39(1):E1-9. PubMed ID: 24660832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Pulsatile Control Algorithms for Diagonal Pump on Hemodynamic Performance and Hemolysis.
    Wang S; Force M; Moroi MK; Patel S; Kunselman AR; Ündar A
    Artif Organs; 2019 Jan; 43(1):60-75. PubMed ID: 30374991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can an oxygenator design potentially contribute to air embolism in cardiopulmonary bypass? A novel method for the determination of the air removal capabilities of neonatal membrane oxygenators.
    De Somer F; Dierickx P; Dujardin D; Verdonck P; Van Nooten G
    Perfusion; 1998 May; 13(3):157-63. PubMed ID: 9638712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic Evaluation of Avalon Elite Bi-Caval Dual Lumen Cannulas and Femoral Arterial Cannulas.
    Wang S; Force M; Kunselman AR; Palanzo D; Brehm C; Ündar A
    Artif Organs; 2019 Jan; 43(1):41-53. PubMed ID: 30273959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.