These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31408562)

  • 1. Shift in lateralization during illusory self-motion: EEG responses to visual flicker at 10 Hz and frequency-specific modulation by tACS.
    Dowsett J; Herrmann CS; Dieterich M; Taylor PCJ
    Eur J Neurosci; 2020 Apr; 51(7):1657-1675. PubMed ID: 31408562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation artifact source separation (SASS) for assessing electric brain oscillations during transcranial alternating current stimulation (tACS).
    Haslacher D; Nasr K; Robinson SE; Braun C; Soekadar SR
    Neuroimage; 2021 Mar; 228():117571. PubMed ID: 33412281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A set of electroencephalographic (EEG) data recorded during amplitude-modulated transcranial alternating current stimulation (AM-tACS) targeting 10-Hz steady-state visually evoked potentials (SSVEP).
    Haslacher D; Nasr K; Robinson SE; Braun C; Soekadar SR
    Data Brief; 2021 Jun; 36():107011. PubMed ID: 33948453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of Visually Induced Self-motion Illusions by α Transcranial Electric Stimulation over the Superior Parietal Cortex.
    Harquel S; Cian C; Torlay L; Cousin E; Barraud PA; Bougerol T; Guerraz M
    J Cogn Neurosci; 2024 Jan; 36(1):143-154. PubMed ID: 37870524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-specific manipulation of rhythmic brain activity by transcranial alternating current stimulation.
    Fiene M; Schwab BC; Misselhorn J; Herrmann CS; Schneider TR; Engel AK
    Brain Stimul; 2020; 13(5):1254-1262. PubMed ID: 32534253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attentional modulation of neural responses to illusory shapes: Evidence from steady-state and evoked visual potentials.
    Wittenhagen L; Mattingley JB
    Neuropsychologia; 2019 Mar; 125():70-80. PubMed ID: 30711611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. tACS facilitates flickering driving by boosting steady-state visual evoked potentials.
    Liu B; Yan X; Chen X; Wang Y; Gao X
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34962233
    [No Abstract]   [Full Text] [Related]  

  • 8. Steady-state visual evoked potentials reveal enhanced neural responses to illusory surfaces during a concurrent visual attention task.
    Wittenhagen L; Mattingley JB
    Cortex; 2019 Aug; 117():217-227. PubMed ID: 30999213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Friends, not foes: Magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation.
    Neuling T; Ruhnau P; Fuscà M; Demarchi G; Herrmann CS; Weisz N
    Neuroimage; 2015 Sep; 118():406-13. PubMed ID: 26080310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural dynamics during repetitive visual stimulation.
    Tsoneva T; Garcia-Molina G; Desain P
    J Neural Eng; 2015 Dec; 12(6):066017. PubMed ID: 26479469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.
    Bayram A; Bayraktaroglu Z; Karahan E; Erdogan B; Bilgic B; Ozker M; Kasikci I; Duru AD; Ademoglu A; Oztürk C; Arikan K; Tarhan N; Demiralp T
    Clin EEG Neurosci; 2011 Apr; 42(2):98-106. PubMed ID: 21675599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation.
    Chai Y; Sheng J; Bandettini PA; Gao JH
    Hum Brain Mapp; 2018 May; 39(5):2111-2120. PubMed ID: 29389051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobile steady-state evoked potential recording: Dissociable neural effects of real-world navigation and visual stimulation.
    Dowsett J; Dieterich M; Taylor PCJ
    J Neurosci Methods; 2020 Feb; 332():108540. PubMed ID: 31809763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personalized alpha-tACS targeting left posterior parietal cortex modulates visuo-spatial attention and posterior evoked EEG activity.
    Radecke JO; Fiene M; Misselhorn J; Herrmann CS; Engel AK; Wolters CH; Schneider TR
    Brain Stimul; 2023; 16(4):1047-1061. PubMed ID: 37353071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcranial alternating current stimulation of α but not β frequency sharpens multiple visual functions.
    Nakazono H; Ogata K; Takeda A; Yamada E; Kimura T; Tobimatsu S
    Brain Stimul; 2020; 13(2):343-352. PubMed ID: 31711878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (α-tACS) Reflects Plastic Changes Rather Than Entrainment.
    Vossen A; Gross J; Thut G
    Brain Stimul; 2015; 8(3):499-508. PubMed ID: 25648377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Face pareidolia is enhanced by 40 Hz transcranial alternating current stimulation (tACS) of the face perception network.
    Palmisano A; Chiarantoni G; Bossi F; Conti A; D'Elia V; Tagliente S; Nitsche MA; Rivolta D
    Sci Rep; 2023 Feb; 13(1):2035. PubMed ID: 36739325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing the effect of tACS over parietal cortex in modulating endogenous alpha rhythm and temporal integration windows in visual perception.
    Ronconi L; Melcher D; Junghöfer M; Wolters CH; Busch NA
    Eur J Neurosci; 2022 Jun; 55(11-12):3438-3450. PubMed ID: 33098112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of dynamic visual acuity using transcranial alternating current stimulation with gamma burst entrained on alpha wave troughs.
    Park J; Lee S; Choi D; Im CH
    Behav Brain Funct; 2023 Aug; 19(1):13. PubMed ID: 37620941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.