These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 31408710)
1. Validity of wearable actimeter computation of total energy expenditure during walking in post-stroke individuals. Compagnat M; Mandigout S; Batcho CS; Vuillerme N; Salle JY; David R; Daviet JC Ann Phys Rehabil Med; 2020 May; 63(3):209-215. PubMed ID: 31408710 [TBL] [Abstract][Full Text] [Related]
2. Quantification of energy expenditure during daily living activities after stroke by multi-sensor. Compagnat M; Daviet JC; Batcho CS; David R; Salle JY; Mandigout S Brain Inj; 2019; 33(10):1341-1346. PubMed ID: 31309843 [No Abstract] [Full Text] [Related]
3. Validity of the Actigraph GT3x and influence of the sensor positioning for the assessment of active energy expenditure during four activities of daily living in stroke subjects. Compagnat M; Mandigout S; Chaparro D; Daviet JC; Salle JY Clin Rehabil; 2018 Dec; 32(12):1696-1704. PubMed ID: 30012036 [TBL] [Abstract][Full Text] [Related]
4. Validity of the accelerometer and smartphone application in estimating energy expenditure in individuals with chronic stroke. Faria GS; Polese JC; Ribeiro-Samora GA; Scianni AA; Faria CDCM; Teixeira-Salmela LF Braz J Phys Ther; 2019; 23(3):236-243. PubMed ID: 30143357 [TBL] [Abstract][Full Text] [Related]
5. Validity of the Walked Distance Estimated by Wearable Devices in Stroke Individuals. Compagnat M; Batcho CS; David R; Vuillerme N; Salle JY; Daviet JC; Mandigout S Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159246 [TBL] [Abstract][Full Text] [Related]
6. The Best Choice of Oxygen Cost Prediction Equation for Computing Post-Stroke Walking Energy Expenditure Using an Accelerometer. Compagnat M; Salle JY; Vinti M; Joste R; Daviet JC Neurorehabil Neural Repair; 2022 Apr; 36(4-5):298-305. PubMed ID: 35168439 [TBL] [Abstract][Full Text] [Related]
7. Wrist-Worn Activity Trackers in Laboratory and Free-Living Settings for Patients With Chronic Pain: Criterion Validity Study. Sjöberg V; Westergren J; Monnier A; Lo Martire R; Hagströmer M; Äng BO; Vixner L JMIR Mhealth Uhealth; 2021 Jan; 9(1):e24806. PubMed ID: 33433391 [TBL] [Abstract][Full Text] [Related]
9. Accuracy of 12 Wearable Devices for Estimating Physical Activity Energy Expenditure Using a Metabolic Chamber and the Doubly Labeled Water Method: Validation Study. Murakami H; Kawakami R; Nakae S; Yamada Y; Nakata Y; Ohkawara K; Sasai H; Ishikawa-Takata K; Tanaka S; Miyachi M JMIR Mhealth Uhealth; 2019 Aug; 7(8):e13938. PubMed ID: 31376273 [TBL] [Abstract][Full Text] [Related]
10. Variables influencing wearable sensor outcome estimates in individuals with stroke and incomplete spinal cord injury: a pilot investigation validating two research grade sensors. Jayaraman C; Mummidisetty CK; Mannix-Slobig A; McGee Koch L; Jayaraman A J Neuroeng Rehabil; 2018 Mar; 15(1):19. PubMed ID: 29534737 [TBL] [Abstract][Full Text] [Related]
11. Can energy expenditure be accurately assessed using accelerometry-based wearable motion detectors for physical activity monitoring in post-stroke patients in the subacute phase? Mandigout S; Lacroix J; Ferry B; Vuillerme N; Compagnat M; Daviet JC Eur J Prev Cardiol; 2017 Dec; 24(18):2009-2016. PubMed ID: 29067851 [TBL] [Abstract][Full Text] [Related]
12. Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running. Price K; Bird SR; Lythgo N; Raj IS; Wong JY; Lynch C J Med Eng Technol; 2017 Apr; 41(3):208-215. PubMed ID: 27919170 [TBL] [Abstract][Full Text] [Related]
13. Accuracy of the Multisensory Wristwatch Polar Vantage's Estimation of Energy Expenditure in Various Activities: Instrument Validation Study. Gilgen-Ammann R; Schweizer T; Wyss T JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14534. PubMed ID: 31579020 [TBL] [Abstract][Full Text] [Related]
14. Systematic review of the validity and reliability of consumer-wearable activity trackers. Evenson KR; Goto MM; Furberg RD Int J Behav Nutr Phys Act; 2015 Dec; 12():159. PubMed ID: 26684758 [TBL] [Abstract][Full Text] [Related]
16. Predicting the oxygen cost of walking in hemiparetic stroke patients. Compagnat M; Mandigout S; Chaparro D; Salle JY; Daviet JC Ann Phys Rehabil Med; 2018 Sep; 61(5):309-314. PubMed ID: 29574116 [TBL] [Abstract][Full Text] [Related]
17. A catalog of validity indices for step counting wearable technologies during treadmill walking: the CADENCE-Kids study. Gould ZR; Mora-Gonzalez J; Aguiar EJ; Schuna JM; Barreira TV; Moore CC; Staudenmayer J; Tudor-Locke C Int J Behav Nutr Phys Act; 2021 Jul; 18(1):97. PubMed ID: 34271922 [TBL] [Abstract][Full Text] [Related]
18. Estimating energy expenditure from raw accelerometry in three types of locomotion. Brandes M; VAN Hees VT; Hannöver V; Brage S Med Sci Sports Exerc; 2012 Nov; 44(11):2235-42. PubMed ID: 22776868 [TBL] [Abstract][Full Text] [Related]
19. Validity study of a triaxial accelerometer for measuring energy expenditure in stroke inpatients of a physical medicine and rehabilitation center. Daniel CR; Yazbek P; Santos ACA; Battistella LR Top Stroke Rehabil; 2023 May; 30(4):402-409. PubMed ID: 35383539 [TBL] [Abstract][Full Text] [Related]
20. Sensor-based foot-mounted wearable system and pressure sensitive gait analysis : Agreement in frail elderly people in long-term care. Rogan S; de Bie R; Douwe de Bruin E Z Gerontol Geriatr; 2017 Aug; 50(6):488-497. PubMed ID: 27599819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]