These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 31408779)
1. Enhancement of β-carotene production by regulating the autophagy-carotenoid biosynthesis seesaw in Chlamydomonas reinhardtii. Tran QG; Cho K; Kim U; Yun JH; Cho DH; Heo J; Park SB; Kim JW; Lee YJ; Ramanan R; Kim HS Bioresour Technol; 2019 Nov; 292():121937. PubMed ID: 31408779 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Carotenoid Production in Chen Y; Du H; Liang H; Hong T; Li T Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511141 [No Abstract] [Full Text] [Related]
3. Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii. Gille A; Trautmann A; Posten C; Briviba K Int J Food Sci Nutr; 2015 Aug; 67(5):507-13. PubMed ID: 27146695 [TBL] [Abstract][Full Text] [Related]
4. Carotenoid deficiency triggers autophagy in the model green alga Chlamydomonas reinhardtii. Pérez-Pérez ME; Couso I; Crespo JL Autophagy; 2012 Mar; 8(3):376-88. PubMed ID: 22302003 [TBL] [Abstract][Full Text] [Related]
5. Metabolic Engineering of Chlamydomonas reinhardtii for Enhanced β-Carotene and Lutein Production. Rathod JP; Vira C; Lali AM; Prakash G Appl Biochem Biotechnol; 2020 Apr; 190(4):1457-1469. PubMed ID: 31782090 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous accumulation of astaxanthin and β-carotene in Chlamydomonas reinhardtii by the introduction of foreign β-carotene hydroxylase gene in response to high light stress. Huang K; Su Z; He M; Wu Y; Wang M Biotechnol Lett; 2022 Feb; 44(2):321-331. PubMed ID: 35119571 [TBL] [Abstract][Full Text] [Related]
7. Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast. Chang JJ; Thia C; Lin HY; Liu HL; Ho FJ; Wu JT; Shih MC; Li WH; Huang CC Bioresour Technol; 2015 May; 184():2-8. PubMed ID: 25537137 [TBL] [Abstract][Full Text] [Related]
8. Light-regulated expression of the gsa gene encoding the chlorophyll biosynthetic enzyme glutamate 1-semialdehyde aminotransferase in carotenoid-deficient Chlamydomonas reinhardtii cells. Herman CA; Im CS; Beale SI Plant Mol Biol; 1999 Jan; 39(2):289-97. PubMed ID: 10080695 [TBL] [Abstract][Full Text] [Related]
9. Metabolic Engineering for Efficient Ketocarotenoid Accumulation in the Green Microalga Amendola S; Kneip JS; Meyer F; Perozeni F; Cazzaniga S; Lauersen KJ; Ballottari M; Baier T ACS Synth Biol; 2023 Mar; 12(3):820-831. PubMed ID: 36821819 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of DnaJ-Like Chaperone Enhances Carotenoid Synthesis in Chlamydomonas reinhardtii. Morikawa T; Uraguchi Y; Sanda S; Nakagawa S; Sawayama S Appl Biochem Biotechnol; 2018 Jan; 184(1):80-91. PubMed ID: 28612271 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of native ORANGE (OR) and OR mutant protein in Chlamydomonas reinhardtii enhances carotenoid and ABA accumulation and increases resistance to abiotic stress. Yazdani M; Croen MG; Fish TL; Thannhauser TW; Ahner BA Metab Eng; 2021 Nov; 68():94-105. PubMed ID: 34571147 [TBL] [Abstract][Full Text] [Related]
12. [Biogenesis and possible modification of carotenoid composition in the Eyespot of Chlamydomonas reinhardtii mutants]. Ladygin VG Mikrobiologiia; 2014; 83(2):160-9. PubMed ID: 25423720 [TBL] [Abstract][Full Text] [Related]
13. [Development of ultrastructure and experimental change in carotene composition of the eyespot in chlamydomonas reinhardtii mutants]. Biofizika; 2013; 58(6):1005-12. PubMed ID: 25486758 [TBL] [Abstract][Full Text] [Related]
14. Monitoring of ATG4 Protease Activity During Autophagy in the Model Microalga Chlamydomonas reinhardtii. Crespo JL; Pérez-Pérez ME Methods Mol Biol; 2022; 2447():205-220. PubMed ID: 35583784 [TBL] [Abstract][Full Text] [Related]
15. Impairment of starch biosynthesis results in elevated oxidative stress and autophagy activity in Chlamydomonas reinhardtii. Tran QG; Cho K; Park SB; Kim U; Lee YJ; Kim HS Sci Rep; 2019 Jul; 9(1):9856. PubMed ID: 31285472 [TBL] [Abstract][Full Text] [Related]
16. Chloroplast Damage Induced by the Inhibition of Fatty Acid Synthesis Triggers Autophagy in Chlamydomonas. Heredia-Martínez LG; Andrés-Garrido A; Martínez-Force E; Pérez-Pérez ME; Crespo JL Plant Physiol; 2018 Nov; 178(3):1112-1129. PubMed ID: 30181343 [TBL] [Abstract][Full Text] [Related]
17. Changes in the carotenoid composition of chloroplast membranes from Chlamydomonas reinhardtii double mutants with alterations of various sites in photosystem II. Ladygin VG; Shirshikova GN Membr Cell Biol; 2000; 13(5):603-16. PubMed ID: 10987384 [TBL] [Abstract][Full Text] [Related]
18. Micro-Raman spectroscopy of the light-harvesting pigments in Chlamydomonas reinhardtii under salinity stress. Pandey S; Archana G; Bagchi D Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121613. PubMed ID: 35853253 [TBL] [Abstract][Full Text] [Related]
19. Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. Im CS; Eberhard S; Huang K; Beck CF; Grossman AR Plant J; 2006 Oct; 48(1):1-16. PubMed ID: 16972865 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Oxidative Lipidomics and Autophagy Induction in Chlamydomonas reinhardtii Under Abiotic Stress. Ortega-Villasante C; Barón-Sola Á; Toledo-Basantes M; Martínez F; Hernández LE Methods Mol Biol; 2021; 2202():71-80. PubMed ID: 32857347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]