These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 31408779)

  • 21. Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii.
    Bohne F; Linden H
    Biochim Biophys Acta; 2002 Nov; 1579(1):26-34. PubMed ID: 12401216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel insight of carotenoid and lipid biosynthesis and their roles in storage carbon metabolism in Chlamydomonas reinhardtii.
    Sun H; Mao X; Wu T; Ren Y; Chen F; Liu B
    Bioresour Technol; 2018 Sep; 263():450-457. PubMed ID: 29772507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitric oxide down-regulation of carotenoid synthesis and PSII activity in relation to very high light-induced singlet oxygen production and oxidative stress in Chlamydomonas reinhardtii.
    Chang HL; Hsu YT; Kang CY; Lee TM
    Plant Cell Physiol; 2013 Aug; 54(8):1296-315. PubMed ID: 23713096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autophagy in the model alga Chlamydomonas reinhardtii.
    Pérez-Pérez ME; Crespo JL
    Autophagy; 2010 May; 6(4):562-3. PubMed ID: 20404489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids.
    Couso I; Vila M; Rodriguez H; Vargas MA; León R
    Biotechnol Prog; 2011; 27(1):54-60. PubMed ID: 21312355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Autophagy Induced Accumulation of Lipids in
    Chouhan N; Devadasu E; Yadav RM; Subramanyam R
    Front Plant Sci; 2021; 12():752634. PubMed ID: 35145528
    [No Abstract]   [Full Text] [Related]  

  • 27. Algal Autophagy Is Necessary for the Regulation of Carbon Metabolism Under Nutrient Deficiency.
    Kajikawa M; Fukuzawa H
    Front Plant Sci; 2020; 11():36. PubMed ID: 32117375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of Synthetic Phytoene Synthase Gene to Enhance β-Carotene Production in Scenedesmus sp. CPC2.
    Chen CY; Kao AL; Tsai ZC; Shen YM; Kao PH; Ng IS; Chang JS
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28865139
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconstruction of the astaxanthin biosynthesis pathway in rice endosperm reveals a metabolic bottleneck at the level of endogenous β-carotene hydroxylase activity.
    Bai C; Berman J; Farre G; Capell T; Sandmann G; Christou P; Zhu C
    Transgenic Res; 2017 Feb; 26(1):13-23. PubMed ID: 27567632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii.
    Lohr M; Im CS; Grossman AR
    Plant Physiol; 2005 May; 138(1):490-515. PubMed ID: 15849308
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis.
    Baek K; Yu J; Jeong J; Sim SJ; Bae S; Jin E
    Biotechnol Bioeng; 2018 Mar; 115(3):719-728. PubMed ID: 29150930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coordinated regulation of gene expression for carotenoid metabolism in Chlamydomonas reinhardtii.
    Sun TH; Liu CQ; Hui YY; Wu WK; Zhou ZG; Lu S
    J Integr Plant Biol; 2010 Oct; 52(10):868-78. PubMed ID: 20883439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ketocarotenoid biosynthesis in transgenic microalgae expressing a foreign β-C-4-carotene oxygenase gene.
    Vila M; Galván A; Fernández E; León R
    Methods Mol Biol; 2012; 892():283-95. PubMed ID: 22623310
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase.
    Yu B; Lydiate DJ; Young LW; Schäfer UA; Hannoufa A
    Transgenic Res; 2008 Aug; 17(4):573-85. PubMed ID: 17851775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and Characterization of Chlamydomonas Autophagy-Related Mutants in Nutrient-Deficient Conditions.
    Kajikawa M; Yamauchi M; Shinkawa H; Tanaka M; Hatano K; Nishimura Y; Kato M; Fukuzawa H
    Plant Cell Physiol; 2019 Jan; 60(1):126-138. PubMed ID: 30295899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of Autophagy in Chlamydomonas Is Mediated through Redox-Dependent Inactivation of the ATG4 Protease.
    Pérez-Pérez ME; Lemaire SD; Crespo JL
    Plant Physiol; 2016 Dec; 172(4):2219-2234. PubMed ID: 27756818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation of Autophagy by Metals in Chlamydomonas reinhardtii.
    Pérez-Martín M; Blaby-Haas CE; Pérez-Pérez ME; Andrés-Garrido A; Blaby IK; Merchant SS; Crespo JL
    Eukaryot Cell; 2015 Sep; 14(9):964-73. PubMed ID: 26163317
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers.
    Diretto G; Welsch R; Tavazza R; Mourgues F; Pizzichini D; Beyer P; Giuliano G
    BMC Plant Biol; 2007 Mar; 7():11. PubMed ID: 17335571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato.
    Kim SH; Ahn YO; Ahn MJ; Lee HS; Kwak SS
    Phytochemistry; 2012 Feb; 74():69-78. PubMed ID: 22154923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Ultrastructural organization and composition of carotenoids in the eyespot in the mutant Chlamydomonas reinhardtii].
    Ladygin VG; Semenova GA
    Tsitologiia; 2014; 56(1):48-56. PubMed ID: 25509143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.