These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 31408794)
1. Removal of U(VI) from nuclear mining effluent by porous hydroxyapatite: Evaluation on characteristics, mechanisms and performance. Su M; Tsang DCW; Ren X; Shi Q; Tang J; Zhang H; Kong L; Hou L; Song G; Chen D Environ Pollut; 2019 Nov; 254(Pt A):112891. PubMed ID: 31408794 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of highly efficient hydroxyapatite microtubes for uranium sequestration and immobilization. Ma C; Peng Y; Su M; Song G; Chen D J Environ Manage; 2023 Oct; 344():118417. PubMed ID: 37352631 [TBL] [Abstract][Full Text] [Related]
3. Uranium(VI) remediation from aqueous environment using impregnated cellulose beads. Rule P; K B; Gonte RR J Environ Radioact; 2014 Oct; 136():22-9. PubMed ID: 24865891 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic synthesis of polydopamine-graphene oxide/hydroxyapatite for efficient and fast uranium(VI) capture from aqueous solution. Xiong W; Liu H; Yang S; Liu Y; Fu T Environ Sci Pollut Res Int; 2023 Nov; 30(53):114569-114581. PubMed ID: 37861826 [TBL] [Abstract][Full Text] [Related]
5. Hydroxyapatite modified ZIF-67 composite with abundant binding groups for the highly efficient and selective elimination of uranium (VI) from wastewater. Xuan K; Wang J; Gong Z; Wang X; Li J; Guo Y; Sun Z J Hazard Mater; 2022 Mar; 426():127834. PubMed ID: 34865903 [TBL] [Abstract][Full Text] [Related]
6. Hydroxyapatite derived from eggshell embedded on functionalized g-C Dhanasekaran A; Priyadarshini N; Perumal I; Suresh G; Sagadevan S Chemosphere; 2024 Sep; 364():143018. PubMed ID: 39111674 [TBL] [Abstract][Full Text] [Related]
7. Highly efficient uranium (VI) capture from aqueous solution by means of a hydroxyapatite-biochar nanocomposite: Adsorption behavior and mechanism. Ahmed W; Núñez-Delgado A; Mehmood S; Ali S; Qaswar M; Shakoor A; Chen DY Environ Res; 2021 Oct; 201():111518. PubMed ID: 34129867 [TBL] [Abstract][Full Text] [Related]
8. Highly enhanced adsorption performance to uranium(VI) by facile synthesized hydroxyapatite aerogel. Xiong T; Li Q; Liao J; Zhang Y; Zhu W J Hazard Mater; 2022 Feb; 423(Pt B):127184. PubMed ID: 34536844 [TBL] [Abstract][Full Text] [Related]
9. Improved performance of a biomaterial-based cation exchanger for the adsorption of uranium(VI) from water and nuclear industry wastewater. Anirudhan TS; Radhakrishnan PG J Environ Radioact; 2009 Mar; 100(3):250-7. PubMed ID: 19168265 [TBL] [Abstract][Full Text] [Related]
10. High-speed and efficient removal of uranium (VI) from aqueous solution by hydroxyapatite-modified ordered mesoporous carbon (CMK-3). Ma M; Deng H; Ren Z; Zhong X Environ Sci Pollut Res Int; 2022 Nov; 29(52):78989-79001. PubMed ID: 35704231 [TBL] [Abstract][Full Text] [Related]
11. Removing uranium (VI) from aqueous solution with insoluble humic acid derived from leonardite. Meng F; Yuan G; Larson SL; Ballard JH; Waggoner CA; Arslan Z; Han FX J Environ Radioact; 2017 Dec; 180():1-8. PubMed ID: 28968541 [TBL] [Abstract][Full Text] [Related]
12. Facile and scalable synthesis of functionalized hierarchical porous polymers for efficient uranium adsorption. Liu Y; Ni S; Wang W; Zhao Y; Meng Y; Liu H; Yang L Water Res; 2024 Jun; 257():121683. PubMed ID: 38703542 [TBL] [Abstract][Full Text] [Related]
13. Graphene oxide functionalized with nano hydroxyapatite for the efficient removal of U(VI) from aqueous solution. Su M; Liu Z; Wu Y; Peng H; Ou T; Huang S; Song G; Kong L; Chen N; Chen D Environ Pollut; 2021 Jan; 268(Pt A):115786. PubMed ID: 33153803 [TBL] [Abstract][Full Text] [Related]
14. Application of response surface methodology for uranium(VI) adsorption using hydroxyapatite prepared from eggshells waste material: study of influencing factors and mechanism. Ouassel S; Chegrouche S; Nibou D; Melikchi R; Aknoun A; Mellah A Water Sci Technol; 2021 Mar; 83(5):1198-1216. PubMed ID: 33724947 [TBL] [Abstract][Full Text] [Related]
15. Efficacy and mechanisms of δ-MnO Liu Y; Yuan W; Lin W; Yu S; Zhou L; Zeng Q; Wang J; Tao L; Dai Q; Liu J Environ Pollut; 2023 Oct; 335():122262. PubMed ID: 37506804 [TBL] [Abstract][Full Text] [Related]
16. Bioprospecting of gum kondagogu (Cochlospermum gossypium) for bioremediation of uranium (VI) from aqueous solution and synthetic nuclear power reactor effluents. Sashidhar RB; Selvi SK; Vinod VT; Kosuri T; Raju D; Karuna R J Environ Radioact; 2015 Oct; 148():33-41. PubMed ID: 26093855 [TBL] [Abstract][Full Text] [Related]
17. Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay. Anirudhan TS; Bringle CD; Rijith S J Environ Radioact; 2010 Mar; 101(3):267-76. PubMed ID: 20045229 [TBL] [Abstract][Full Text] [Related]
18. Rapid and effective removal of uranium (VI) from aqueous solution by facile synthesized hierarchical hollow hydroxyapatite microspheres. Wu Y; Chen D; Kong L; Tsang DCW; Su M J Hazard Mater; 2019 Jun; 371():397-405. PubMed ID: 30870644 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of uranium interactions with hydroxyapatite: implications for groundwater remediation. Fuller CC; Bargar JR; Davis JA; Piana MJ Environ Sci Technol; 2002 Jan; 36(2):158-65. PubMed ID: 11827049 [TBL] [Abstract][Full Text] [Related]
20. Development of highly efficient bundle-like hydroxyapatite towards abatement of aqueous U(VI) ions: Mechanism and economic assessment. Shi Q; Su M; Yuvaraja G; Tang J; Kong L; Chen D J Hazard Mater; 2020 Jul; 394():122550. PubMed ID: 32299040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]