These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31408814)

  • 1. A comparative life cycle assessment for sustainable cement production in Turkey.
    Çankaya S; Pekey B
    J Environ Manage; 2019 Nov; 249():109362. PubMed ID: 31408814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model for cradle-to-gate life cycle assessment of clinker production.
    Boesch ME; Koehler A; Hellweg S
    Environ Sci Technol; 2009 Oct; 43(19):7578-83. PubMed ID: 19848179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle assessment of the use of alternative fuels in cement kilns: A case study.
    Georgiopoulou M; Lyberatos G
    J Environ Manage; 2018 Jun; 216():224-234. PubMed ID: 28716294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental assessment of sewage sludge as secondary raw material in cement production--a case study in China.
    Hong J; Li X
    Waste Manag; 2011 Jun; 31(6):1364-71. PubMed ID: 21288709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative life cycle assessment of three 2030 scenarios of the Brazilian cement industry.
    Palermo GC; Castelo Branco DA; Fiorini ACO; de Freitas MAV
    Environ Monit Assess; 2022 Feb; 194(3):153. PubMed ID: 35132516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle assessment of cane sugar production: The environmental contribution to human health, climate change, ecosystem quality and resources in México.
    Meza-Palacios R; Aguilar-Lasserre AA; Morales-Mendoza LF; Pérez-Gallardo JR; Rico-Contreras JO; Avarado-Lassman A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(7):668-678. PubMed ID: 30810472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental feasibility evaluation of cement co-production using classified domestic waste as alternative raw material and fuel: A life cycle perspective.
    Liang X; Dang W; Yang G; Zhang Y
    J Environ Manage; 2023 Jan; 326(Pt A):116726. PubMed ID: 36375424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life Cycle Assessment of Cement Production with Marble Waste Sludges.
    Sánchez AR; Ramos VC; Polo MS; Ramón MVL; Utrilla JR
    Int J Environ Res Public Health; 2021 Oct; 18(20):. PubMed ID: 34682714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainability assessment of Indonesian cement manufacturing via integrated life cycle assessment and analytical hierarchy process method.
    Putra MA; Teh KC; Tan J; Choong TSY
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):29352-29360. PubMed ID: 32440875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential use of pyrite cinders as raw material in cement production: results of industrial scale trial operations.
    Alp I; Deveci H; Yazici EY; Türk T; Süngün YH
    J Hazard Mater; 2009 Jul; 166(1):144-9. PubMed ID: 19100685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Addition of large amount of municipal sewage sludge as raw material in cement clinker production.
    Huang M; Feng H; Li N; Shen D; Zhou Y; Jia Y
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):27862-27869. PubMed ID: 28988311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oil-based mud cutting as an additional raw material in clinker production.
    Al Dhamri HS; Abdul-Wahab SA; Velis C; Black L
    J Hazard Mater; 2020 Feb; 384():121022. PubMed ID: 31706749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspectives for pilot scale study of RDF in Istanbul, Turkey.
    Kara M; Günay E; Tabak Y; Yildiz S
    Waste Manag; 2009 Dec; 29(12):2976-82. PubMed ID: 19709868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization and life cycle assessment of low activity solid waste as cementitious materials: A case study of titanium slag and granulated blast furnace slag.
    Tao M; Lu D; Shi Y; Wu C
    Sci Total Environ; 2022 Nov; 849():157797. PubMed ID: 35932851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies.
    Gallagher PM; Spatari S; Cucura J
    J Hazard Mater; 2013 Apr; 250-251():421-30. PubMed ID: 23500422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle assessment of sustainable raw material acquisition for functional magnetite bionanoparticle production.
    Sadhukhan J; Joshi N; Shemfe M; Lloyd JR
    J Environ Manage; 2017 Sep; 199():116-125. PubMed ID: 28527738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying improvement potentials in cement production with life cycle assessment.
    Boesch ME; Hellweg S
    Environ Sci Technol; 2010 Dec; 44(23):9143-9. PubMed ID: 21047057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated approach using AHP and DEMATEL for evaluating climate change mitigation strategies of the Indian cement manufacturing industry.
    Balsara S; Jain PK; Ramesh A
    Environ Pollut; 2019 Sep; 252(Pt A):863-878. PubMed ID: 31202139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of flotation wastes of copper slag as raw material in cement production.
    Alp I; Deveci H; Süngün H
    J Hazard Mater; 2008 Nov; 159(2-3):390-5. PubMed ID: 18384950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing concrete for circularity: a comparative life cycle assessment of geopolymer and ordinary concrete.
    Bamshad O; Ramezanianpour AM
    Environ Sci Pollut Res Int; 2024 Sep; 31(43):55788-55811. PubMed ID: 39244520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.