These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31409064)

  • 1. Emulsion Lyophilization as a Facile Pathway to Fabricate Stretchable Polymer Foams Enabling Multishape Memory Effect and Clip Application.
    Hou Y; Fang G; Jiang Y; Song H; Zhang Y; Zhao Q
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32423-32430. PubMed ID: 31409064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inorganic-organic shape memory polymer (SMP) foams with highly tunable properties.
    Zhang D; Petersen KM; Grunlan MA
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):186-91. PubMed ID: 23227875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of macroporous zwitterionic hydrogels templated from graphene oxide-stabilized aqueous foams.
    Zhang Z; Tan H; Zhao Y; Wang Q; Wang H
    J Colloid Interface Sci; 2019 Oct; 553():40-49. PubMed ID: 31185382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dip TIPS as a facile and versatile method for fabrication of polymer foams with controlled shape, size and pore architecture for bioengineering applications.
    Kasoju N; Kubies D; Kumorek MM; Kříž J; Fábryová E; Machová L; Kovářová J; Rypáček F
    PLoS One; 2014; 9(9):e108792. PubMed ID: 25275373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-density PDMS foams by controlled destabilization of thixotropic emulsions.
    Timusk M; Nigol IA; Vlassov S; Oras S; Kangur T; Linarts A; Šutka A
    J Colloid Interface Sci; 2022 Nov; 626():265-275. PubMed ID: 35792458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Facile and General Approach to Recoverable High-Strain Multishape Shape Memory Polymers.
    Li X; Pan Y; Zheng Z; Ding X
    Macromol Rapid Commun; 2018 Mar; 39(6):e1700613. PubMed ID: 29292554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple and environment-friendly approach for synthesizing macroporous polymers from aqueous foams.
    Tan H; Tu S; Zhao Y; Wang H; Du Q
    J Colloid Interface Sci; 2018 Jan; 509():209-218. PubMed ID: 28910686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroporous polymer thin film prepared from temporarily stabilized water-in-oil emulsion.
    Ham HT; Chung IJ; Choi YS; Lee SH; Kim SO
    J Phys Chem B; 2006 Jul; 110(28):13959-64. PubMed ID: 16836347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation and polymerization of foamed 1,4-BDDMA-in-water emulsions.
    Dabrowski ML; Hamann M; Stubenrauch C
    RSC Adv; 2020 Feb; 10(15):8917-8926. PubMed ID: 35496563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monodisperse polystyrene foams via polymerization of foamed emulsions: structure and mechanical properties.
    Elsing J; Stefanov T; Gilchrist MD; Stubenrauch C
    Phys Chem Chem Phys; 2017 Feb; 19(7):5477-5485. PubMed ID: 28165070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Facile Strategy to Fabricate Multishape Memory Polymers with Controllable Mechanical Properties.
    Zhang Q; Hua W; Feng J
    Macromol Rapid Commun; 2016 Aug; 37(15):1262-7. PubMed ID: 27254383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methacrylate-based polymer foams with controllable connectivity, pore shape, pore size and polydispersity.
    Dabrowski ML; Jenkins D; Cosgriff-Hernandez E; Stubenrauch C
    Phys Chem Chem Phys; 2019 Dec; 22(1):155-168. PubMed ID: 31793935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroporous hybrid Pickering foams based on carbon nanotubes and cellulose nanocrystals.
    Mougel JB; Bertoncini P; Cathala B; Chauvet O; Capron I
    J Colloid Interface Sci; 2019 May; 544():78-87. PubMed ID: 30826532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of some factors on fabrication of poly(L-lactic acid) microporous foams by thermally induced phase separation using N,N-dimethylacetamide as solvent.
    Li S; Chen X; Li M
    Prep Biochem Biotechnol; 2011; 41(1):53-72. PubMed ID: 21229464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Omnidirectional Shape Memory Effect via Lyophilization of PEG Hydrogels.
    Chen D; Xia X; Wong TW; Bai H; Behl M; Zhao Q; Lendlein A; Xie T
    Macromol Rapid Commun; 2017 Apr; 38(7):. PubMed ID: 28196300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying.
    Cervin NT; Johansson E; Larsson PA; Wågberg L
    ACS Appl Mater Interfaces; 2016 May; 8(18):11682-9. PubMed ID: 27070532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interconnected Porous Polymers with Tunable Pore Throat Size Prepared via Pickering High Internal Phase Emulsions.
    Xu H; Zheng X; Huang Y; Wang H; Du Q
    Langmuir; 2016 Jan; 32(1):38-45. PubMed ID: 26673546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates.
    Hu Y; Ma S; Yang Z; Zhou W; Du Z; Huang J; Yi H; Wang C
    Colloids Surf B Biointerfaces; 2016 Apr; 140():382-391. PubMed ID: 26774574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Convenient and Versatile Strategy for the Functionalization of Silica Foams Using High Internal Phase Emulsion Templates as Microreactors.
    Yu H; Wang Q; Zhao Y; Wang H
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14607-14619. PubMed ID: 32150371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.