These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 31409071)

  • 1. Gap-Induced Giant Third-Order Optical Nonlinearity and Long Electron Relaxation Time in Random-Distributed Gold Nanorod Arrays.
    Wang X; Yao L; Chen X; Dai H; Wang M; Zhang L; Ni Y; Xiao L; Han JB
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32469-32474. PubMed ID: 31409071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement.
    Cheng ZQ; Nan F; Yang DJ; Zhong YT; Ma L; Hao ZH; Zhou L; Wang QQ
    Nanoscale; 2015 Jan; 7(4):1463-70. PubMed ID: 25503522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of a three-dimensional photonic crystal on the plasmonic properties of gold nanorods.
    Lv G; Li J; Tie SL; Lan S
    Opt Express; 2016 Jun; 24(13):14124-37. PubMed ID: 27410571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Third-order optical nonlinearity of gold nanoparticle arrays embedded in a BaTiO3 matrix.
    Ning T; Chen C; Zhou Y; Lu H; Shen H; Zhang D; Wang P; Ming H; Yang G
    Appl Opt; 2009 Jan; 48(2):375-9. PubMed ID: 19137050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot-Electron-Assisted Femtosecond All-Optical Modulation in Plasmonics.
    Taghinejad M; Taghinejad H; Xu Z; Liu Y; Rodrigues SP; Lee KT; Lian T; Adibi A; Cai W
    Adv Mater; 2018 Mar; 30(9):. PubMed ID: 29333735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter.
    Xue Y; Ding C; Rong Y; Ma Q; Pan C; Wu E; Wu B; Zeng H
    Small; 2017 Sep; 13(36):. PubMed ID: 28783235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extremely large third-order nonlinear optical effects caused by electron transport in quantum plasmonic metasurfaces with subnanometer gaps.
    Takeuchi T; Yabana K
    Sci Rep; 2020 Dec; 10(1):21270. PubMed ID: 33277512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Enhancement of Two-Photon-Excited Luminescence of Single Quantum Dots by Individual Gold Nanorods.
    Zhang W; Caldarola M; Lu X; Orrit M
    ACS Photonics; 2018 Jul; 5(7):2960-2968. PubMed ID: 30057930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlated Absorption and Scattering Spectroscopy of Individual Platinum-Decorated Gold Nanorods Reveals Strong Excitation Enhancement in the Nonplasmonic Metal.
    Joplin A; Hosseini Jebeli SA; Sung E; Diemler N; Straney PJ; Yorulmaz M; Chang WS; Millstone JE; Link S
    ACS Nano; 2017 Dec; 11(12):12346-12357. PubMed ID: 29155558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods.
    Woo KC; Shao L; Chen H; Liang Y; Wang J; Lin HQ
    ACS Nano; 2011 Jul; 5(7):5976-86. PubMed ID: 21702485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods.
    Tsutsui Y; Hayakawa T; Kawamura G; Nogami M
    Nanotechnology; 2011 Jul; 22(27):275203. PubMed ID: 21597141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of optical nonlinearity in periodic gold nanoparticle arrays.
    Shen H; Cheng B; Lu G; Ning T; Guan D; Zhou Y; Chen Z
    Nanotechnology; 2006 Aug; 17(16):4274-7. PubMed ID: 21727571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropically Enhanced Nonlinear Optical Properties of Ensembles of Gold Nanorods Electrospun in Polymer Nanofiber Film.
    Zhang H; Hu Z; Ma Z; Gecevičius M; Dong G; Zhou S; Qiu J
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2048-53. PubMed ID: 26731010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the third and second-order nonlinear optical properties of GeS(2)-Ga(2)S3-AgCl chalcohalide glasses.
    Dong G; Tao H; Xiao X; Lin C; Gong Y; Zhao X; Chu S; Wang S; Gong Q
    Opt Express; 2007 Mar; 15(5):2398-408. PubMed ID: 19532477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant optical nonlinearity of a single plasmonic nanostructure.
    Melentiev PN; Afanasiev AE; Kuzin AA; Baturin AS; Balykin VI
    Opt Express; 2013 Jun; 21(12):13896-905. PubMed ID: 23787579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic behaviors of gold dimers perturbed by a single nanoparticle in the gap.
    Ye J; Van Dorpe P
    Nanoscale; 2012 Nov; 4(22):7205-11. PubMed ID: 23073071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtosecond third-order optical nonlinearity of an azobenzene-containing ionic liquid crystalline polymer.
    Zhao F; Wang C; Zhang J; Zeng Y
    Opt Express; 2012 Nov; 20(24):26845-51. PubMed ID: 23187538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of the complex third-order nonlinear optical susceptibility in Au nanorods.
    Sato R; Henzie J; Rong H; Naito M; Takeda Y
    Opt Express; 2019 Jul; 27(14):19168-19176. PubMed ID: 31503680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance.
    Baida H; Mongin D; Christofilos D; Bachelier G; Crut A; Maioli P; Del Fatti N; Vallée F
    Phys Rev Lett; 2011 Jul; 107(5):057402. PubMed ID: 21867097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved sensitivity of wavelength-modulated surface plasmon resonance biosensor using gold nanorods.
    Hao P; Wu Y; Li F
    Appl Opt; 2011 Oct; 50(28):5555-8. PubMed ID: 22016225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.