These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 31409283)
1. Transcriptomic analysis reveals the mechanism of thermosensitive genic male sterility (TGMS) of Brassica napus under the high temperature inducement. Tang X; Hao YJ; Lu JX; Lu G; Zhang T BMC Genomics; 2019 Aug; 20(1):644. PubMed ID: 31409283 [TBL] [Abstract][Full Text] [Related]
2. Cytological observation of anther structure and genetic investigation of a thermo-sensitive genic male sterile line 373S in Brassica napus L. Sun Y; Zhang D; Wang Z; Guo Y; Sun X; Li W; Zhi W; Hu S BMC Plant Biol; 2020 Jan; 20(1):8. PubMed ID: 31906856 [TBL] [Abstract][Full Text] [Related]
3. Comparative proteomics analysis reveals the mechanism of fertility alternation of thermosensitive genic male sterile rice lines under low temperature inducement. Song L; Liu Z; Tong J; Xiao L; Ma H; Zhang H Proteomics; 2015 Jun; 15(11):1884-905. PubMed ID: 25641954 [TBL] [Abstract][Full Text] [Related]
4. Genes associated with thermosensitive genic male sterility in rice identified by comparative expression profiling. Pan Y; Li Q; Wang Z; Wang Y; Ma R; Zhu L; He G; Chen R BMC Genomics; 2014 Dec; 15(1):1114. PubMed ID: 25512054 [TBL] [Abstract][Full Text] [Related]
5. Comparative transcriptome analysis provides insight into the important pathways and key genes related to the pollen abortion in the thermo-sensitive genic male sterile line 373S in Brassica napus L. Sun Y; Zhang D; Dong H; Wang Z; Wang J; Lv H; Guo Y; Hu S Funct Integr Genomics; 2022 Dec; 23(1):26. PubMed ID: 36576592 [TBL] [Abstract][Full Text] [Related]
6. Molecular Analysis Uncovers the Mechanism of Fertility Restoration in Temperature-Sensitive Polima Cytoplasmic Male-Sterile Xiao Q; Wang H; Chen H; Chen X; Wen J; Dai C; Ma C; Tu J; Shen J; Fu T; Yi B Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830333 [TBL] [Abstract][Full Text] [Related]
7. A separation defect of tapetum cells and microspore mother cells results in male sterility in Brassica napus: the role of abscisic acid in early anther development. Zhu Y; Dun X; Zhou Z; Xia S; Yi B; Wen J; Shen J; Ma C; Tu J; Fu T Plant Mol Biol; 2010 Jan; 72(1-2):111-23. PubMed ID: 19862484 [TBL] [Abstract][Full Text] [Related]
8. Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers. Carlsson J; Lagercrantz U; Sundström J; Teixeira R; Wellmer F; Meyerowitz EM; Glimelius K Plant J; 2007 Feb; 49(3):452-62. PubMed ID: 17217466 [TBL] [Abstract][Full Text] [Related]
9. Comparative Transcriptome Analysis of Recessive Male Sterility (RGMS) in Sterile and Fertile Brassica napus Lines. Qu C; Fu F; Liu M; Zhao H; Liu C; Li J; Tang Z; Xu X; Qiu X; Wang R; Lu K PLoS One; 2015; 10(12):e0144118. PubMed ID: 26656530 [TBL] [Abstract][Full Text] [Related]
10. Identification of miRNAs and their target genes in genic male sterility lines in Brassica napus by small RNA sequencing. Jiang J; Xu P; Li Y; Li Y; Zhou X; Jiang M; Zhang J; Zhu J; Wang W; Yang L BMC Plant Biol; 2021 Nov; 21(1):520. PubMed ID: 34753417 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide transcriptomic analyses provide insights into the lifestyle transition and effector repertoire of Leptosphaeria maculans during the colonization of Brassica napus seedlings. Haddadi P; Ma L; Wang H; Borhan MH Mol Plant Pathol; 2016 Oct; 17(8):1196-210. PubMed ID: 26679637 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome Profile Analysis of Winter Rapeseed ( Pu Y; Liu L; Wu J; Zhao Y; Bai J; Ma L; Yue J; Jin J; Niu Z; Fang Y; Sun W Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31195741 [TBL] [Abstract][Full Text] [Related]
14. A transcriptome analysis reveals a role for the indole GLS-linked auxin biosynthesis in secondary dormancy in rapeseed (Brassica napus L.). Liu L; Liu F; Chu J; Yi X; Fan W; Tang T; Chen G; Guo Q; Zhao X BMC Plant Biol; 2019 Jun; 19(1):264. PubMed ID: 31215396 [TBL] [Abstract][Full Text] [Related]
15. Comparative transcript profiling of fertile and sterile flower buds from multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Zhou X; Liu Z; Ji R; Feng H Mol Genet Genomics; 2017 Oct; 292(5):967-990. PubMed ID: 28492984 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide analysis of the auxin/indoleacetic acid (Aux/IAA) gene family in allotetraploid rapeseed (Brassica napus L.). Li H; Wang B; Zhang Q; Wang J; King GJ; Liu K BMC Plant Biol; 2017 Nov; 17(1):204. PubMed ID: 29145811 [TBL] [Abstract][Full Text] [Related]
17. Fine mapping of a dominant thermo-sensitive genic male sterility gene (BntsMs) in rapeseed (Brassica napus) with AFLP- and Brassica rapa-derived PCR markers. Zeng X; Li W; Wu Y; Liu F; Luo J; Cao Y; Zhu L; Li Y; Li J; You Q; Wu G Theor Appl Genet; 2014 Aug; 127(8):1733-40. PubMed ID: 24913363 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome and Hormone Comparison of Three Cytoplasmic Male Sterile Systems in Ding B; Hao M; Mei D; Zaman QU; Sang S; Wang H; Wang W; Fu L; Cheng H; Hu Q Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30545163 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional profiling of canola developing embryo and identification of the important roles of BnDof5.6 in embryo development and fatty acids synthesis. Deng W; Yan F; Zhang X; Tang Y; Yuan Y Plant Cell Physiol; 2015 Aug; 56(8):1624-40. PubMed ID: 26092973 [TBL] [Abstract][Full Text] [Related]
20. Blocked synthesis of sporopollenin and jasmonic acid leads to pollen wall defects and anther indehiscence in genic male sterile wheat line 4110S at high temperatures. Yang X; Ye J; Zhang L; Song X Funct Integr Genomics; 2020 May; 20(3):383-396. PubMed ID: 31729646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]