These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 31409394)
1. Immune microenvironment modulation unmasks therapeutic benefit of radiotherapy and checkpoint inhibition. Newton JM; Hanoteau A; Liu HC; Gaspero A; Parikh F; Gartrell-Corrado RD; Hart TD; Laoui D; Van Ginderachter JA; Dharmaraj N; Spanos WC; Saenger Y; Young S; Sikora AG J Immunother Cancer; 2019 Aug; 7(1):216. PubMed ID: 31409394 [TBL] [Abstract][Full Text] [Related]
2. Tumor microenvironment modulation enhances immunologic benefit of chemoradiotherapy. Hanoteau A; Newton JM; Krupar R; Huang C; Liu HC; Gaspero A; Gartrell RD; Saenger YM; Hart TD; Santegoets SJ; Laoui D; Spanos C; Parikh F; Jayaraman P; Zhang B; Van der Burg SH; Van Ginderachter JA; Melief CJM; Sikora AG J Immunother Cancer; 2019 Jan; 7(1):10. PubMed ID: 30646957 [TBL] [Abstract][Full Text] [Related]
3. Targeting interferon signaling and CTLA-4 enhance the therapeutic efficacy of anti-PD-1 immunotherapy in preclinical model of HPV Dorta-Estremera S; Hegde VL; Slay RB; Sun R; Yanamandra AV; Nicholas C; Nookala S; Sierra G; Curran MA; Sastry KJ J Immunother Cancer; 2019 Sep; 7(1):252. PubMed ID: 31533840 [TBL] [Abstract][Full Text] [Related]
4. Anti-PD-1/anti-CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8 Taggart D; Andreou T; Scott KJ; Williams J; Rippaus N; Brownlie RJ; Ilett EJ; Salmond RJ; Melcher A; Lorger M Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1540-E1549. PubMed ID: 29386395 [TBL] [Abstract][Full Text] [Related]
5. ATR inhibitor AZD6738 enhances the antitumor activity of radiotherapy and immune checkpoint inhibitors by potentiating the tumor immune microenvironment in hepatocellular carcinoma. Sheng H; Huang Y; Xiao Y; Zhu Z; Shen M; Zhou P; Guo Z; Wang J; Wang H; Dai W; Zhang W; Sun J; Cao C J Immunother Cancer; 2020 May; 8(1):. PubMed ID: 32461345 [TBL] [Abstract][Full Text] [Related]
6. Glioblastoma Eradication Following Immune Checkpoint Blockade in an Orthotopic, Immunocompetent Model. Reardon DA; Gokhale PC; Klein SR; Ligon KL; Rodig SJ; Ramkissoon SH; Jones KL; Conway AS; Liao X; Zhou J; Wen PY; Van Den Abbeele AD; Hodi FS; Qin L; Kohl NE; Sharpe AH; Dranoff G; Freeman GJ Cancer Immunol Res; 2016 Feb; 4(2):124-35. PubMed ID: 26546453 [TBL] [Abstract][Full Text] [Related]
7. Oncolytic virus expressing PD-1 inhibitors activates a collaborative intratumoral immune response to control tumor and synergizes with CTLA-4 or TIM-3 blockade. Ju F; Luo Y; Lin C; Jia X; Xu Z; Tian R; Lin Y; Zhao M; Chang Y; Huang X; Li S; Ren W; Qin Y; Yu M; Jia J; Han J; Luo W; Zhang J; Fu G; Ye X; Huang C; Xia N J Immunother Cancer; 2022 Jun; 10(6):. PubMed ID: 35688558 [TBL] [Abstract][Full Text] [Related]
8. Harnessing radiotherapy-induced NK-cell activity by combining DNA damage-response inhibition and immune checkpoint blockade. Patin EC; Dillon MT; Nenclares P; Grove L; Soliman H; Leslie I; Northcote D; Bozhanova G; Crespo-Rodriguez E; Baldock H; Whittock H; Baker G; Kyula J; Guevara J; Melcher AA; Harper J; Ghadially H; Smith S; Pedersen M; McLaughlin M; Harrington KJ J Immunother Cancer; 2022 Mar; 10(3):. PubMed ID: 35314434 [TBL] [Abstract][Full Text] [Related]
9. Intratumoral immunotherapy using a TLR2/3 agonist, L-pampo, induces robust antitumor immune responses and enhances immune checkpoint blockade. Lee WS; Kim DS; Kim JH; Heo Y; Yang H; Go EJ; Kim JH; Lee SJ; Ahn BC; Yum JS; Chon HJ; Kim C J Immunother Cancer; 2022 Jun; 10(6):. PubMed ID: 35764365 [TBL] [Abstract][Full Text] [Related]
10. In situ immunogenic clearance induced by a combination of photodynamic therapy and rho-kinase inhibition sensitizes immune checkpoint blockade response to elicit systemic antitumor immunity against intraocular melanoma and its metastasis. Kim S; Kim SA; Nam GH; Hong Y; Kim GB; Choi Y; Lee S; Cho Y; Kwon M; Jeong C; Kim S; Kim IS J Immunother Cancer; 2021 Jan; 9(1):. PubMed ID: 33479026 [TBL] [Abstract][Full Text] [Related]
11. Combined immune checkpoint blockade increases CD8+CD28+PD-1+ effector T cells and provides a therapeutic strategy for patients with neuroblastoma. Shirinbak S; Chan RY; Shahani S; Muthugounder S; Kennedy R; Hung LT; Fernandez GE; Hadjidaniel MD; Moghimi B; Sheard MA; Epstein AL; Fabbri M; Shimada H; Asgharzadeh S Oncoimmunology; 2021 Jan; 10(1):1838140. PubMed ID: 33489468 [TBL] [Abstract][Full Text] [Related]
12. Mucosal HPV E6/E7 Peptide Vaccination in Combination with Immune Checkpoint Modulation Induces Regression of HPV Dorta-Estremera S; Chin RL; Sierra G; Nicholas C; Yanamandra AV; Nookala SMK; Yang G; Singh S; Curran MA; Sastry KJ Cancer Res; 2018 Sep; 78(18):5327-5339. PubMed ID: 30054333 [TBL] [Abstract][Full Text] [Related]
13. Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19-IL2 cures poorly immunogenic tumors when combined with radiotherapy. Olivo Pimentel V; Marcus D; van der Wiel AM; Lieuwes NG; Biemans R; Lieverse RI; Neri D; Theys J; Yaromina A; Dubois LJ; Lambin P J Immunother Cancer; 2021 Mar; 9(3):. PubMed ID: 33688020 [TBL] [Abstract][Full Text] [Related]
14. A CD40 Agonist and PD-1 Antagonist Antibody Reprogram the Microenvironment of Nonimmunogenic Tumors to Allow T-cell-Mediated Anticancer Activity. Ma HS; Poudel B; Torres ER; Sidhom JW; Robinson TM; Christmas B; Scott B; Cruz K; Woolman S; Wall VZ; Armstrong T; Jaffee EM Cancer Immunol Res; 2019 Mar; 7(3):428-442. PubMed ID: 30642833 [TBL] [Abstract][Full Text] [Related]
15. The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma. Mahoney KM; Freeman GJ; McDermott DF Clin Ther; 2015 Apr; 37(4):764-82. PubMed ID: 25823918 [TBL] [Abstract][Full Text] [Related]
16. Domatinostat favors the immunotherapy response by modulating the tumor immune microenvironment (TIME). Bretz AC; Parnitzke U; Kronthaler K; Dreker T; Bartz R; Hermann F; Ammendola A; Wulff T; Hamm S J Immunother Cancer; 2019 Nov; 7(1):294. PubMed ID: 31703604 [TBL] [Abstract][Full Text] [Related]
17. Combination CTLA-4 blockade and 4-1BB activation enhances tumor rejection by increasing T-cell infiltration, proliferation, and cytokine production. Curran MA; Kim M; Montalvo W; Al-Shamkhani A; Allison JP PLoS One; 2011 Apr; 6(4):e19499. PubMed ID: 21559358 [TBL] [Abstract][Full Text] [Related]
18. Characterization of tumor-associated T-lymphocyte subsets and immune checkpoint molecules in head and neck squamous cell carcinoma. Lechner A; Schlößer H; Rothschild SI; Thelen M; Reuter S; Zentis P; Shimabukuro-Vornhagen A; Theurich S; Wennhold K; Garcia-Marquez M; Tharun L; Quaas A; Schauss A; Isensee J; Hucho T; Huebbers C; von Bergwelt-Baildon M; Beutner D Oncotarget; 2017 Jul; 8(27):44418-44433. PubMed ID: 28574843 [TBL] [Abstract][Full Text] [Related]
19. The MEK inhibitor selumetinib complements CTLA-4 blockade by reprogramming the tumor immune microenvironment. Poon E; Mullins S; Watkins A; Williams GS; Koopmann JO; Di Genova G; Cumberbatch M; Veldman-Jones M; Grosskurth SE; Sah V; Schuller A; Reimer C; Dovedi SJ; Smith PD; Stewart R; Wilkinson RW J Immunother Cancer; 2017 Aug; 5(1):63. PubMed ID: 28807001 [TBL] [Abstract][Full Text] [Related]
20. Curing mice with large tumors by locally delivering combinations of immunomodulatory antibodies. Dai M; Yip YY; Hellstrom I; Hellstrom KE Clin Cancer Res; 2015 Mar; 21(5):1127-38. PubMed ID: 25142145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]