These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 31409714)

  • 1. Complex dynamics under tension in a high-efficiency frameshift stimulatory structure.
    Halma MTJ; Ritchie DB; Cappellano TR; Neupane K; Woodside MT
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19500-19505. PubMed ID: 31409714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational dynamics of the frameshift stimulatory structure in HIV-1.
    Ritchie DB; Cappellano TR; Tittle C; Rezajooei N; Rouleau L; Sikkema WKA; Woodside MT
    RNA; 2017 Sep; 23(9):1376-1384. PubMed ID: 28522581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational Shannon Entropy of mRNA Structures from Force Spectroscopy Measurements Predicts the Efficiency of -1 Programmed Ribosomal Frameshift Stimulation.
    Halma MTJ; Ritchie DB; Woodside MT
    Phys Rev Lett; 2021 Jan; 126(3):038102. PubMed ID: 33543960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and Functional Characterization of Programmed Ribosomal Frameshift Signals in West Nile Virus Strains Reveals High Structural Plasticity Among cis-Acting RNA Elements.
    Moomau C; Musalgaonkar S; Khan YA; Jones JE; Dinman JD
    J Biol Chem; 2016 Jul; 291(30):15788-95. PubMed ID: 27226636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural dynamics of single SARS-CoV-2 pseudoknot molecules reveal topologically distinct conformers.
    Neupane K; Zhao M; Lyons A; Munshi S; Ileperuma SM; Ritchie DB; Hoffer NQ; Narayan A; Woodside MT
    Nat Commun; 2021 Aug; 12(1):4749. PubMed ID: 34362921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible involvement of coaxially stacked double pseudoknots in the regulation of -1 programmed ribosomal frameshifting in RNA viruses.
    Wang G; Yang Y; Huang X; Du Z
    J Biomol Struct Dyn; 2015; 33(7):1547-57. PubMed ID: 25204560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.
    Hansen TM; Reihani SN; Oddershede LB; Sørensen MA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the stimulators of protein-directed ribosomal frameshifting in Theiler's murine encephalomyelitis virus.
    Napthine S; Bell S; Hill CH; Brierley I; Firth AE
    Nucleic Acids Res; 2019 Sep; 47(15):8207-8223. PubMed ID: 31180502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly conserved RNA pseudoknots at the Gag-Pol junction of HIV-1 suggest a novel mechanism of -1 ribosomal frameshifting.
    Huang X; Yang Y; Wang G; Cheng Q; Du Z
    RNA; 2014 May; 20(5):587-93. PubMed ID: 24671765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translocation kinetics and structural dynamics of ribosomes are modulated by the conformational plasticity of downstream pseudoknots.
    Wu B; Zhang H; Sun R; Peng S; Cooperman BS; Goldman YE; Chen C
    Nucleic Acids Res; 2018 Oct; 46(18):9736-9748. PubMed ID: 30011005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing -1 programmed ribosomal frameshifting mechanisms by single-molecule techniques and computational methods.
    Chang KC
    Comput Math Methods Med; 2012; 2012():569870. PubMed ID: 22545064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of frameshift-stimulating RNA pseudoknots is facilitated by remodeling of their folding intermediates.
    Hsu CF; Chang KC; Chen YL; Hsieh PS; Lee AI; Tu JY; Chen YT; Wen JD
    Nucleic Acids Res; 2021 Jul; 49(12):6941-6957. PubMed ID: 34161580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmed ribosomal frameshift alters expression of west nile virus genes and facilitates virus replication in birds and mosquitoes.
    Melian EB; Hall-Mendelin S; Du F; Owens N; Bosco-Lauth AM; Nagasaki T; Rudd S; Brault AC; Bowen RA; Hall RA; van den Hurk AF; Khromykh AA
    PLoS Pathog; 2014 Nov; 10(11):e1004447. PubMed ID: 25375107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding.
    Ritchie DB; Foster DA; Woodside MT
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16167-72. PubMed ID: 22988073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local structural and environmental factors define the efficiency of an RNA pseudoknot involved in programmed ribosomal frameshift process.
    Gupta A; Bansal M
    J Phys Chem B; 2014 Oct; 118(41):11905-20. PubMed ID: 25226454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A genome-wide analysis of RNA pseudoknots that stimulate efficient -1 ribosomal frameshifting or readthrough in animal viruses.
    Huang X; Cheng Q; Du Z
    Biomed Res Int; 2013; 2013():984028. PubMed ID: 24298557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site.
    Wang Y; Wills NM; Du Z; Rangan A; Atkins JF; Gesteland RF; Hoffman DW
    RNA; 2002 Aug; 8(8):981-96. PubMed ID: 12212853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting.
    Giedroc DP; Theimer CA; Nixon PL
    J Mol Biol; 2000 Apr; 298(2):167-85. PubMed ID: 10764589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Torsional restraint: a new twist on frameshifting pseudoknots.
    Plant EP; Dinman JD
    Nucleic Acids Res; 2005; 33(6):1825-33. PubMed ID: 15800212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A programmed -1 ribosomal frameshift signal can function as a cis-acting mRNA destabilizing element.
    Plant EP; Wang P; Jacobs JL; Dinman JD
    Nucleic Acids Res; 2004; 32(2):784-90. PubMed ID: 14762205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.