These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 31409869)

  • 41. Effects of diltiazem on pharmacokinetics of tacrolimus in relation to CYP3A5 genotype status in renal recipients: from retrospective to prospective.
    Li JL; Wang XD; Chen SY; Liu LS; Fu Q; Chen X; Teng LC; Wang CX; Huang M
    Pharmacogenomics J; 2011 Aug; 11(4):300-6. PubMed ID: 20514078
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients.
    Haufroid V; Mourad M; Van Kerckhove V; Wawrzyniak J; De Meyer M; Eddour DC; Malaise J; Lison D; Squifflet JP; Wallemacq P
    Pharmacogenetics; 2004 Mar; 14(3):147-54. PubMed ID: 15167702
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dosing algorithm for Tacrolimus in Tunisian Kidney transplant patients: Effect of CYP 3A4*1B and CYP3A4*22 polymorphisms.
    Ben-Fredj N; Hannachi I; Chadli Z; Ben-Romdhane H; A Boughattas N; Ben-Fadhel N; Aouam K
    Toxicol Appl Pharmacol; 2020 Nov; 407():115245. PubMed ID: 32949580
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of CYP3A5 polymorphisms on the pharmacokinetics of tacrolimus in adolescent kidney transplant recipients.
    Tirelli S; Ferraresso M; Ghio L; Meregalli E; Martina V; Belingheri M; Mattiello C; Torresani E; Edefonti A
    Med Sci Monit; 2008 May; 14(5):CR251-254. PubMed ID: 18443548
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients.
    Elens L; Hesselink DA; Bouamar R; Budde K; de Fijter JW; De Meyer M; Mourad M; Kuypers DR; Haufroid V; van Gelder T; van Schaik RH
    Ther Drug Monit; 2014 Feb; 36(1):71-9. PubMed ID: 24061445
    [TBL] [Abstract][Full Text] [Related]  

  • 46. No impact of age on dose-adjusted pharmacokinetics of tacrolimus, mycophenolic acid and prednisolone 1 month after renal transplantation.
    Miura M; Satoh S; Kagaya H; Saito M; Inoue T; Tsuchiya N; Suzuki T; Habuchi T
    Eur J Clin Pharmacol; 2009 Oct; 65(10):1047-53. PubMed ID: 19730841
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors' dose requirements and trough blood levels in stable renal transplant patients.
    Elens L; van Schaik RH; Panin N; de Meyer M; Wallemacq P; Lison D; Mourad M; Haufroid V
    Pharmacogenomics; 2011 Oct; 12(10):1383-96. PubMed ID: 21902502
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Switching Immunosuppression From Cyclosporine to Tacrolimus in Kidney Transplant Recipients Based on CYP3A5 Genotyping.
    Wang X; Yang Y; Liu Z; Xiao C; Gao L; Zhang W; Zhang W; Wang Z
    Ther Drug Monit; 2019 Feb; 41(1):97-101. PubMed ID: 30520827
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Systematic external evaluation of published population pharmacokinetic models of mycophenolate mofetil in adult kidney transplant recipients co-administered with tacrolimus.
    Zhang HX; Sheng CC; Liu LS; Luo B; Fu Q; Zhao Q; Li J; Liu YF; Deng RH; Jiao Z; Wang CX
    Br J Clin Pharmacol; 2019 Apr; 85(4):746-761. PubMed ID: 30597603
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Population pharmacokinetics of tacrolimus in adult kidney transplant patients: impact of CYP3A5 genotype on starting dose.
    Bergmann TK; Hennig S; Barraclough KA; Isbel NM; Staatz CE
    Ther Drug Monit; 2014 Feb; 36(1):62-70. PubMed ID: 24089074
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of CYP3A5 polymorphism on the pharmacokinetics of a once-daily modified-release tacrolimus formulation and acute kidney injury in hematopoietic stem cell transplantation.
    Yamashita T; Fujishima N; Miura M; Niioka T; Abumiya M; Shinohara Y; Ubukawa K; Nara M; Fujishima M; Kameoka Y; Tagawa H; Hirokawa M; Takahashi N
    Cancer Chemother Pharmacol; 2016 Jul; 78(1):111-8. PubMed ID: 27217047
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Individualization of tacrolimus dosage basing on cytochrome P450 3A5 polymorphism--a prospective, randomized, controlled study.
    Chen SY; Li JL; Meng FH; Wang XD; Liu T; Li J; Liu LS; Fu Q; Huang M; Wang CX
    Clin Transplant; 2013; 27(3):E272-81. PubMed ID: 23432535
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Significant impact of gene polymorphisms on tacrolimus but not cyclosporine dosing in Asian renal transplant recipients.
    Loh PT; Lou HX; Zhao Y; Chin YM; Vathsala A
    Transplant Proc; 2008 Jun; 40(5):1690-5. PubMed ID: 18589174
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Drug interaction between mycophenolate mofetil and tacrolimus detectable within therapeutic mycophenolic acid monitoring in renal transplant patients.
    Hübner GI; Eismann R; Sziegoleit W
    Ther Drug Monit; 1999 Oct; 21(5):536-9. PubMed ID: 10519451
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Association Between Tacrolimus Pharmacokinetics and Cytochrome P450 3A5 and Multidrug Resistance Protein 1 Exon 21 Polymorphisms.
    Soda M; Fujitani M; Michiuchi R; Shibayama A; Kanamori K; Yoshikuni S; Ohno Y; Tsuchiya T; Suzuki A; Horie K; Deguchi T; Itoh Y; Kitaichi K
    Transplant Proc; 2017; 49(6):1492-1498. PubMed ID: 28736028
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Polymorphism of the CYP3A5 gene and its effect on tacrolimus blood level.
    Nair SS; Sarasamma S; Gracious N; George J; Anish TS; Radhakrishnan R
    Exp Clin Transplant; 2015 Apr; 13 Suppl 1():197-200. PubMed ID: 25894154
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pharmacokinetics, efficacy, and safety of mycophenolate mofetil in combination with standard-dose or reduced-dose tacrolimus in liver transplant recipients.
    Nashan B; Saliba F; Durand F; Barcéna R; Herrero JI; Mentha G; Neuhaus P; Bowles M; Patch D; Bernardos A; Klempnauer J; Bouw R; Ives J; Mamelok R; McKay D; Truman M; Marotta P
    Liver Transpl; 2009 Feb; 15(2):136-47. PubMed ID: 19177449
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Long-term changes in mycophenolic acid exposure in combination with tacrolimus and corticosteroids are dose dependent and not reflected by trough plasma concentration: a prospective study in 100 de novo renal allograft recipients.
    Kuypers DR; Claes K; Evenepoel P; Maes B; Coosemans W; Pirenne J; Vanrenterghem Y
    J Clin Pharmacol; 2003 Aug; 43(8):866-80. PubMed ID: 12953344
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pharmacokinetics of mycophenolic acid and its glucuronide metabolites in stable adult liver transplant recipients with renal dysfunction on a low-dose calcineurin inhibitor regimen and mycophenolate mofetil.
    Beckebaum S; Armstrong VW; Cicinnati VR; Streit F; Klein CG; Gerken G; Paul A; Oellerich M
    Ther Drug Monit; 2009 Apr; 31(2):205-10. PubMed ID: 19307937
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The POR rs1057868-rs2868177 GC-GT diplotype is associated with high tacrolimus concentrations in early post-renal transplant recipients.
    Liu S; Chen RX; Li J; Zhang Y; Wang XD; Fu Q; Chen LY; Liu XM; Huang HB; Huang M; Wang CX; Li JL
    Acta Pharmacol Sin; 2016 Sep; 37(9):1251-8. PubMed ID: 27498776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.