These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31410376)

  • 1. Topological exploration of artificial neuronal network dynamics.
    Bardin JB; Spreemann G; Hess K
    Netw Neurosci; 2019; 3(3):725-743. PubMed ID: 31410376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method for persistent topological features extraction of schizophrenia patients' electroencephalography signal based on persistent homology.
    Guo G; Zhao Y; Liu C; Fu Y; Xi X; Jin L; Shi D; Wang L; Duan Y; Huang J; Tan S; Yin G
    Front Comput Neurosci; 2022; 16():1024205. PubMed ID: 36277610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Training deep neural density estimators to identify mechanistic models of neural dynamics.
    Gonçalves PJ; Lueckmann JM; Deistler M; Nonnenmacher M; Öcal K; Bassetto G; Chintaluri C; Podlaski WF; Haddad SA; Vogels TP; Greenberg DS; Macke JH
    Elife; 2020 Sep; 9():. PubMed ID: 32940606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological features of spike trains in recurrent spiking neural networks that are trained to generate spatiotemporal patterns.
    Maslennikov O; Perc M; Nekorkin V
    Front Comput Neurosci; 2024; 18():1363514. PubMed ID: 38463243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TREPH: A Plug-In Topological Layer for Graph Neural Networks.
    Ye X; Sun F; Xiang S
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adversarially Trained Persistent Homology Based Graph Convolutional Network for Disease Identification Using Brain Connectivity.
    Bian C; Xia N; Xie A; Cong S; Dong Q
    IEEE Trans Med Imaging; 2024 Jan; 43(1):503-516. PubMed ID: 37643097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological dynamics in spike-timing dependent plastic model neural networks.
    Stone DB; Tesche CD
    Front Neural Circuits; 2013; 7():70. PubMed ID: 23616750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network.
    You ZH; Yin Z; Han K; Huang DS; Zhou X
    BMC Bioinformatics; 2010 Jun; 11():343. PubMed ID: 20573270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.
    Jovanović S; Rotter S
    PLoS Comput Biol; 2016 Jun; 12(6):e1004963. PubMed ID: 27271768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data.
    Stromatias E; Soto M; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2017; 11():350. PubMed ID: 28701911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AAGCN: a graph convolutional neural network with adaptive feature and topology learning.
    Wang B; Cai B; Sheng J; Jiao W
    Sci Rep; 2024 May; 14(1):10134. PubMed ID: 38698098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions.
    Xu S; Li Y; Guo Q; Yang XF; Chan RHM
    J Neurosci Methods; 2017 Feb; 278():46-56. PubMed ID: 28062244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Objective Supervised Machine Learning-Based Classification and Inference of Biological Neuronal Networks.
    Barros MT; Siljak H; Mullen P; Papadias C; Hyttinen J; Marchetti N
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear reconfiguration of network edges, topology and information content during an artificial learning task.
    Shine JM; Li M; Koyejo O; Fulcher B; Lizier JT
    Brain Inform; 2021 Dec; 8(1):26. PubMed ID: 34859330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological Learning Approach to Characterizing Biological Membranes.
    Arango AS; Park H; Tajkhorshid E
    bioRxiv; 2023 Nov; ():. PubMed ID: 38076911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atom-specific persistent homology and its application to protein flexibility analysis.
    Bramer D; Wei GW
    Comput Math Biophys; 2020 Jan; 8(1):1-35. PubMed ID: 34278230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topological Learning Approach to Characterizing Biological Membranes.
    Arango AS; Park H; Tajkhorshid E
    J Chem Inf Model; 2024 Jul; 64(13):5242-5252. PubMed ID: 38912752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.