These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31410419)

  • 1. Acoustophoretic rapid media exchange and continuous-flow electrotransfection of primary human T cells for applications in automated cellular therapy manufacturing.
    Hsi P; Christianson RJ; Dubay RA; Lissandrello CA; Fiering J; Balestrini JL; Tandon V
    Lab Chip; 2019 Sep; 19(18):2978-2992. PubMed ID: 31410419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput continuous-flow microfluidic electroporation of mRNA into primary human T cells for applications in cellular therapy manufacturing.
    Lissandrello CA; Santos JA; Hsi P; Welch M; Mott VL; Kim ES; Chesin J; Haroutunian NJ; Stoddard AG; Czarnecki A; Coppeta JR; Freeman DK; Flusberg DA; Balestrini JL; Tandon V
    Sci Rep; 2020 Oct; 10(1):18045. PubMed ID: 33093518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable continuous-flow electroporation platform enabling T cell transfection for cellular therapy manufacturing.
    VanderBurgh JA; Corso TN; Levy SL; Craighead HG
    Sci Rep; 2023 Apr; 13(1):6857. PubMed ID: 37185305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly uniform in-situ cell electrotransfection of adherent cultures using grouped interdigitated electrodes.
    Zhou Y; Lu Y; Cheng J; Xu Y
    Bioelectrochemistry; 2020 Apr; 132():107435. PubMed ID: 31855831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic electro-sonoporation: a multi-modal cell poration methodology through simultaneous application of electric field and ultrasonic wave.
    Longsine-Parker W; Wang H; Koo C; Kim J; Kim B; Jayaraman A; Han A
    Lab Chip; 2013 Jun; 13(11):2144-52. PubMed ID: 23615834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Flow-Through Cell Electroporation Device for Rapidly and Efficiently Transfecting Massive Amounts of Cells in vitro and ex vivo.
    Zhao D; Huang D; Li Y; Wu M; Zhong W; Cheng Q; Wang X; Wu Y; Zhou X; Wei Z; Li Z; Liang Z
    Sci Rep; 2016 Jan; 6():18469. PubMed ID: 26728941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semicontinuous flow electroporation chip for high-throughput transfection on mammalian cells.
    Wang S; Zhang X; Wang W; Lee LJ
    Anal Chem; 2009 Jun; 81(11):4414-21. PubMed ID: 19419195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized DNA electroporation for primary human T cell engineering.
    Zhang Z; Qiu S; Zhang X; Chen W
    BMC Biotechnol; 2018 Jan; 18(1):4. PubMed ID: 29378552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Nanochannel Array for High-Throughput Cell Manipulation and Electroporation.
    Chang L; Black S; Chitrakar C; Nouri M
    Methods Mol Biol; 2020; 2050():29-41. PubMed ID: 31468477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroporation of cells in microfluidic devices: a review.
    Fox MB; Esveld DC; Valero A; Luttge R; Mastwijk HC; Bartels PV; van den Berg A; Boom RM
    Anal Bioanal Chem; 2006 Jun; 385(3):474-85. PubMed ID: 16534574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Device for Localized Electroporation.
    Brooks J; Jaberi A; Yang R
    Methods Mol Biol; 2020; 2050():91-97. PubMed ID: 31468483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-Through Electroporation of HL-60 White Blood Cell Suspensions using Nanoporous Membrane Electrodes.
    Chen Z; Akenhead MA; Sun X; Sapper H; Shin HY; Hinds BJ
    Adv Healthc Mater; 2016 Aug; 5(16):2105-12. PubMed ID: 27377174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient, large volume flow electroporation.
    Li LH; Shivakumar R; Feller S; Allen C; Weiss JM; Dzekunov S; Singh V; Holaday J; Fratantoni J; Liu LN
    Technol Cancer Res Treat; 2002 Oct; 1(5):341-50. PubMed ID: 12625759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-printing enabled micro-assembly of a microfluidic electroporation system for 3D tissue engineering.
    Zhu Q; Hamilton M; Vasquez B; He M
    Lab Chip; 2019 Jul; 19(14):2362-2372. PubMed ID: 31214669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous cell electroporation for efficient DNA and siRNA delivery based on laminar microfluidic chips.
    Wei Z; Li Z
    Methods Mol Biol; 2014; 1121():99-110. PubMed ID: 24510815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient and high-throughput electroporation microchip applicable for siRNA delivery.
    Huang H; Wei Z; Huang Y; Zhao D; Zheng L; Cai T; Wu M; Wang W; Ding X; Zhou Z; Du Q; Li Z; Liang Z
    Lab Chip; 2011 Jan; 11(1):163-72. PubMed ID: 20957267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient large volume electroporation of dendritic cells through micrometer scale manipulation of flow in a disposable polymer chip.
    Selmeczi D; Hansen TS; Met O; Svane IM; Larsen NB
    Biomed Microdevices; 2011 Apr; 13(2):383-92. PubMed ID: 21207149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential multi-molecule delivery using vortex-assisted electroporation.
    Yun H; Hur SC
    Lab Chip; 2013 Jul; 13(14):2764-72. PubMed ID: 23727978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation.
    Zhao Y; Zheng Z; Cohen CJ; Gattinoni L; Palmer DC; Restifo NP; Rosenberg SA; Morgan RA
    Mol Ther; 2006 Jan; 13(1):151-9. PubMed ID: 16140584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoresis-assisted single-cell electroporation for efficient intracellular delivery.
    Ionescu-Zanetti C; Blatz A; Khine M
    Biomed Microdevices; 2008 Feb; 10(1):113-6. PubMed ID: 17828458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.