These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 31410431)
1. Loading natural emulsions with nutraceuticals using the pH-driven method: formation & stability of curcumin-loaded soybean oil bodies. Zheng B; Zhang X; Lin H; McClements DJ Food Funct; 2019 Sep; 10(9):5473-5484. PubMed ID: 31410431 [TBL] [Abstract][Full Text] [Related]
2. Impact of Delivery System Type on Curcumin Bioaccessibility: Comparison of Curcumin-Loaded Nanoemulsions with Commercial Curcumin Supplements. Zheng B; Peng S; Zhang X; McClements DJ J Agric Food Chem; 2018 Oct; 66(41):10816-10826. PubMed ID: 30252460 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of Curcumin-Loaded Dairy Milks Using the pH-Shift Method: Formation, Stability, and Bioaccessibility. Zheng B; Lin H; Zhang X; McClements DJ J Agric Food Chem; 2019 Nov; 67(44):12245-12254. PubMed ID: 31613624 [TBL] [Abstract][Full Text] [Related]
4. Physical and Chemical Stability of Curcumin in Aqueous Solutions and Emulsions: Impact of pH, Temperature, and Molecular Environment. Kharat M; Du Z; Zhang G; McClements DJ J Agric Food Chem; 2017 Mar; 65(8):1525-1532. PubMed ID: 27935709 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Emulsion and Nanoemulsion Delivery Systems: The Chemical Stability of Curcumin Decreases as Oil Droplet Size Decreases. Kharat M; Aberg J; Dai T; McClements DJ J Agric Food Chem; 2020 Aug; 68(34):9205-9212. PubMed ID: 32786867 [TBL] [Abstract][Full Text] [Related]
6. Formation, Physicochemical Stability, and Redispersibility of Curcumin-Loaded Rhamnolipid Nanoparticles Using the pH-Driven Method. Ma Y; Chen S; Liao W; Zhang L; Liu J; Gao Y J Agric Food Chem; 2020 Jul; 68(27):7103-7111. PubMed ID: 32559379 [TBL] [Abstract][Full Text] [Related]
7. Stability of curcumin in oil-in-water emulsions: Impact of emulsifier type and concentration on chemical degradation. Kharat M; Zhang G; McClements DJ Food Res Int; 2018 Sep; 111():178-186. PubMed ID: 30007674 [TBL] [Abstract][Full Text] [Related]
8. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Peng S; Li Z; Zou L; Liu W; Liu C; McClements DJ Food Funct; 2018 Mar; 9(3):1829-1839. PubMed ID: 29517797 [TBL] [Abstract][Full Text] [Related]
9. Development, characterization and stability evaluation of ciprofloxacin-loaded parenteral nutrition nanoemulsions. Said Suliman A; Tom R; Palmer K; Tolaymat I; Younes HM; Arafat B; Elhissi AMA; Najlah M Pharm Dev Technol; 2020 Jun; 25(5):579-587. PubMed ID: 31967908 [TBL] [Abstract][Full Text] [Related]
10. Development of Chitosan-Based pH-Sensitive Polymeric Micelles Containing Curcumin for Colon-Targeted Drug Delivery. Woraphatphadung T; Sajomsang W; Rojanarata T; Ngawhirunpat T; Tonglairoum P; Opanasopit P AAPS PharmSciTech; 2018 Apr; 19(3):991-1000. PubMed ID: 29110292 [TBL] [Abstract][Full Text] [Related]
11. Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line. Lin CC; Lin HY; Chi MH; Shen CM; Chen HW; Yang WJ; Lee MH Food Chem; 2014 Jul; 154():282-90. PubMed ID: 24518344 [TBL] [Abstract][Full Text] [Related]
12. Impact of curcumin delivery system format on bioaccessibility: nanocrystals, nanoemulsion droplets, and natural oil bodies. Zheng B; Zhang X; Peng S; Julian McClements D Food Funct; 2019 Jul; 10(7):4339-4349. PubMed ID: 31276144 [TBL] [Abstract][Full Text] [Related]
13. Effects of preheat treatments on the composition, rheological properties, and physical stability of soybean oil bodies. Fu L; He Z; Zeng M; Qin F; Chen J J Food Sci; 2020 Oct; 85(10):3150-3159. PubMed ID: 32895950 [TBL] [Abstract][Full Text] [Related]
14. Extraction and characterization of oil bodies from soy beans: a natural source of pre-emulsified soybean oil. Iwanaga D; Gray DA; Fisk ID; Decker EA; Weiss J; McClements DJ J Agric Food Chem; 2007 Oct; 55(21):8711-6. PubMed ID: 17880158 [TBL] [Abstract][Full Text] [Related]
15. Recent advances in colloidal delivery systems for nutraceuticals: A case study - Delivery by Design of curcumin. Kharat M; McClements DJ J Colloid Interface Sci; 2019 Dec; 557():506-518. PubMed ID: 31542691 [TBL] [Abstract][Full Text] [Related]
16. Encapsulation of Lipophilic Polyphenols into Nanoliposomes Using pH-Driven Method: Advantages and Disadvantages. Peng S; Zou L; Zhou W; Liu W; Liu C; McClements DJ J Agric Food Chem; 2019 Jul; 67(26):7506-7511. PubMed ID: 31184879 [TBL] [Abstract][Full Text] [Related]
17. Comparison of pharmaceutical nanoformulations for curcumin: Enhancement of aqueous solubility and carrier retention. Allijn IE; Schiffelers RM; Storm G Int J Pharm; 2016 Jun; 506(1-2):407-13. PubMed ID: 27139142 [TBL] [Abstract][Full Text] [Related]
19. Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Aditya NP; Aditya S; Yang H; Kim HW; Park SO; Ko S Food Chem; 2015 Apr; 173():7-13. PubMed ID: 25465989 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of oil-in-water emulsions as shelf-stable liquid non-dairy creamers: effects of homogenization pressure, oil type, and emulsifier concentration. Soo YN; Tan CP; Tan PY; Khalid N; Tan TB J Sci Food Agric; 2021 Apr; 101(6):2455-2462. PubMed ID: 33034060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]