BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 31410472)

  • 1. Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system.
    Josipović G; Tadić V; Klasić M; Zanki V; Bečeheli I; Chung F; Ghantous A; Keser T; Madunić J; Bošković M; Lauc G; Herceg Z; Vojta A; Zoldoš V
    Nucleic Acids Res; 2019 Oct; 47(18):9637-9657. PubMed ID: 31410472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner.
    O'Geen H; Bates SL; Carter SS; Nisson KA; Halmai J; Fink KD; Rhie SK; Farnham PJ; Segal DJ
    Epigenetics Chromatin; 2019 May; 12(1):26. PubMed ID: 31053162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repurposing the CRISPR-Cas9 system for targeted DNA methylation.
    Vojta A; Dobrinić P; Tadić V; Bočkor L; Korać P; Julg B; Klasić M; Zoldoš V
    Nucleic Acids Res; 2016 Jul; 44(12):5615-28. PubMed ID: 26969735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs.
    Pflueger C; Tan D; Swain T; Nguyen T; Pflueger J; Nefzger C; Polo JM; Ford E; Lister R
    Genome Res; 2018 Aug; 28(8):1193-1206. PubMed ID: 29907613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Downregulation of SNCA Expression by Targeted Editing of DNA Methylation: A Potential Strategy for Precision Therapy in PD.
    Kantor B; Tagliafierro L; Gu J; Zamora ME; Ilich E; Grenier C; Huang ZY; Murphy S; Chiba-Falek O
    Mol Ther; 2018 Nov; 26(11):2638-2649. PubMed ID: 30266652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Editing of DNA Methylation Using dCas9-Peptide Repeat and scFv-TET1 Catalytic Domain Fusions.
    Morita S; Horii T; Hatada I
    Methods Mol Biol; 2018; 1767():419-428. PubMed ID: 29524149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases.
    Lin L; Liu Y; Xu F; Huang J; Daugaard TF; Petersen TS; Hansen B; Ye L; Zhou Q; Fang F; Yang L; Li S; Fløe L; Jensen KT; Shrock E; Chen F; Yang H; Wang J; Liu X; Xu X; Bolund L; Nielsen AL; Luo Y
    Gigascience; 2018 Mar; 7(3):1-19. PubMed ID: 29635374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing.
    Goubert D; Koncz M; Kiss A; Rots MG
    Methods Mol Biol; 2018; 1767():395-415. PubMed ID: 29524148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on CRISPR/Cas-based epigenetic regulation in plants.
    Jogam P; Sandhya D; Alok A; Peddaboina V; Allini VR; Zhang B
    Int J Biol Macromol; 2022 Oct; 219():1261-1271. PubMed ID: 36057300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Targeted DNA Methylation with dCas9-Coupled DNMT3A-DNMT3L Methyltransferase.
    Bashtrykov P; Rajaram N; Jeltsch A
    Methods Mol Biol; 2023; 2577():177-188. PubMed ID: 36173573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein engineering strategies for improving the selective methylation of target CpG sites by a dCas9-directed cytosine methyltransferase in bacteria.
    Xiong T; Rohm D; Workman RE; Roundtree L; Novina CD; Timp W; Ostermeier M
    PLoS One; 2018; 13(12):e0209408. PubMed ID: 30562388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA methylation-independent long-term epigenetic silencing with dCRISPR/Cas9 fusion proteins.
    Ding L; Schmitt LT; Brux M; Sürün D; Augsburg M; Lansing F; Mircetic J; Theis M; Buchholz F
    Life Sci Alliance; 2022 Jun; 5(6):. PubMed ID: 35288457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A.
    Huang YH; Su J; Lei Y; Brunetti L; Gundry MC; Zhang X; Jeong M; Li W; Goodell MA
    Genome Biol; 2017 Sep; 18(1):176. PubMed ID: 28923089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter.
    Choudhury SR; Cui Y; Lubecka K; Stefanska B; Irudayaraj J
    Oncotarget; 2016 Jul; 7(29):46545-46556. PubMed ID: 27356740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific recruitment of epigenetic factors with a modular CRISPR/Cas system.
    Anton T; Bultmann S
    Nucleus; 2017 May; 8(3):279-286. PubMed ID: 28448738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active fusions of Cas9 orthologs.
    Josipović G; Zoldoš V; Vojta A
    J Biotechnol; 2019 Aug; 301():18-23. PubMed ID: 31158410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inheritable CRISPR based epigenetic modification in a fungus.
    Chen X; Moran Torres JP; Li Y; Lugones LG; Wösten HAB
    Microbiol Res; 2023 Jul; 272():127397. PubMed ID: 37141850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-mediated demethylation of FOXP3-TSDR toward Treg-characteristic programming of Jurkat T cells.
    Wilk C; Effenberg L; Abberger H; Steenpass L; Hansen W; Zeschnigk M; Kirschning C; Buer J; Kehrmann J
    Cell Immunol; 2022 Jan; 371():104471. PubMed ID: 34954490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable targeted epigenetic editing using CRISPR system in Bombyx mori.
    Liu Y; Ma S; Chang J; Zhang T; Chen X; Liang Y; Xia Q
    Insect Biochem Mol Biol; 2019 Jul; 110():105-111. PubMed ID: 31022512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.