These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 31410665)

  • 1. Targeting Mitochondria in Alzheimer Disease: Rationale and Perspectives.
    Lanzillotta C; Di Domenico F; Perluigi M; Butterfield DA
    CNS Drugs; 2019 Oct; 33(10):957-969. PubMed ID: 31410665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the prodromal stage of Alzheimer's disease: bioenergetic and mitochondrial opportunities.
    Caldwell CC; Yao J; Brinton RD
    Neurotherapeutics; 2015 Jan; 12(1):66-80. PubMed ID: 25534394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delineation of Neuroprotective Effects and Possible Benefits of AntioxidantsTherapy for the Treatment of Alzheimer's Diseases by Targeting Mitochondrial-Derived Reactive Oxygen Species: Bench to Bedside.
    Walia V; Kaushik D; Mittal V; Kumar K; Verma R; Parashar J; Akter R; Rahman MH; Bhatia S; Al-Harrasi A; Karthika C; Bhattacharya T; Chopra H; Ashraf GM
    Mol Neurobiol; 2022 Jan; 59(1):657-680. PubMed ID: 34751889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondria- and Oxidative Stress-Targeting Substances in Cognitive Decline-Related Disorders: From Molecular Mechanisms to Clinical Evidence.
    Lejri I; Agapouda A; Grimm A; Eckert A
    Oxid Med Cell Longev; 2019; 2019():9695412. PubMed ID: 31214285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial Dysfunction in Alzheimer's Disease and the Rationale for Bioenergetics Based Therapies.
    Onyango IG; Dennis J; Khan SM
    Aging Dis; 2016 Mar; 7(2):201-14. PubMed ID: 27114851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle Delivery of Mitochondria-Targeted Drugs for the Treatment of Sarcopenia: Rationale and Perspectives.
    Bellanti F; Lo Buglio A; Vendemiale G
    Pharmaceutics; 2022 Nov; 14(12):. PubMed ID: 36559079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrion-specific antioxidants as drug treatments for Alzheimer disease.
    Palacios HH; Yendluri BB; Parvathaneni K; Shadlinski VB; Obrenovich ME; Leszek J; Gokhman D; Gąsiorowski K; Bragin V; Aliev G
    CNS Neurol Disord Drug Targets; 2011 Mar; 10(2):149-62. PubMed ID: 21222631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nrf2 activation through the PI3K/GSK-3 axis protects neuronal cells from Aβ-mediated oxidative and metabolic damage.
    Sotolongo K; Ghiso J; Rostagno A
    Alzheimers Res Ther; 2020 Jan; 12(1):13. PubMed ID: 31931869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial defects: An emerging theranostic avenue towards Alzheimer's associated dysregulations.
    Mani S; Swargiary G; Singh M; Agarwal S; Dey A; Ojha S; Jha NK
    Life Sci; 2021 Nov; 285():119985. PubMed ID: 34592237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroprotective strategies involving ROS in Alzheimer disease.
    Dumont M; Beal MF
    Free Radic Biol Med; 2011 Sep; 51(5):1014-26. PubMed ID: 21130159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Verapamil attenuates scopolamine induced cognitive deficits by averting oxidative stress and mitochondrial injury - A potential therapeutic agent for Alzheimer's Disease.
    Ponne S; Kumar CR; Boopathy R
    Metab Brain Dis; 2020 Mar; 35(3):503-515. PubMed ID: 31691145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic reprogramming of human cells in response to oxidative stress: implications in the pathophysiology and therapy of mitochondrial diseases.
    Wu YT; Wu SB; Wei YH
    Curr Pharm Des; 2014; 20(35):5510-26. PubMed ID: 24606797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small molecules as therapeutic drugs for Alzheimer's disease.
    Oliver DMA; Reddy PH
    Mol Cell Neurosci; 2019 Apr; 96():47-62. PubMed ID: 30877034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial Dysfunction: a Potential Therapeutic Target to Treat Alzheimer's Disease.
    Rai SN; Singh C; Singh A; Singh MP; Singh BK
    Mol Neurobiol; 2020 Jul; 57(7):3075-3088. PubMed ID: 32462551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria-Targeted Therapeutics for Alzheimer's Disease: The Good, the Bad, the Potential.
    Mi Y; Qi G; Brinton RD; Yin F
    Antioxid Redox Signal; 2021 Mar; 34(8):611-630. PubMed ID: 32143551
    [No Abstract]   [Full Text] [Related]  

  • 17. Mitochondrial connection to ginsenosides.
    Wang F; Roh YS
    Arch Pharm Res; 2020 Oct; 43(10):1031-1045. PubMed ID: 33113096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estrogen regulation of mitochondrial bioenergetics: implications for prevention of Alzheimer's disease.
    Yao J; Brinton RD
    Adv Pharmacol; 2012; 64():327-71. PubMed ID: 22840752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal mitochondria-targeted therapy for Alzheimer's disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems.
    Han Y; Chu X; Cui L; Fu S; Gao C; Li Y; Sun B
    Drug Deliv; 2020 Dec; 27(1):502-518. PubMed ID: 32228100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective mechanisms involving enhanced mitochondrial functions and mitophagy against T-2 toxin-induced toxicities in GH3 cells.
    Deyu H; Luqing C; Xianglian L; Pu G; Qirong L; Xu W; Zonghui Y
    Toxicol Lett; 2018 Oct; 295():41-53. PubMed ID: 29870751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.