BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31410794)

  • 1. Characterization of Peptide-Oligonucleotide Complexes Using Electron Microscopy, Dynamic Light Scattering, and Protease Resistance Assay.
    Padari K; Porosk L; Arukuusk P; Pooga M
    Methods Mol Biol; 2019; 2036():127-139. PubMed ID: 31410794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of Cell-Penetrating Peptide/Nucleic Acid Nanoparticles.
    Margus H; Arukuusk P; Langel Ü; Pooga M
    Mol Pharm; 2016 Jan; 13(1):172-9. PubMed ID: 26561739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of bioactive peptide-chitosan nanocomplexes.
    Hu B; Wang SS; Li J; Zeng XX; Huang QR
    J Phys Chem B; 2011 Jun; 115(23):7515-23. PubMed ID: 21608974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling the Mechanisms of Peptide-Mediated Delivery of Nucleic Acids Using Electron Microscopy.
    Margus H; Juks C; Pooga M
    Methods Mol Biol; 2015; 1324():149-62. PubMed ID: 26202268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous silicon-cell penetrating peptide hybrid nanocarrier for intracellular delivery of oligonucleotides.
    Rytkönen J; Arukuusk P; Xu W; Kurrikoff K; Langel U; Lehto VP; Närvänen A
    Mol Pharm; 2014 Feb; 11(2):382-90. PubMed ID: 24341621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring Particle Size Distribution by Asymmetric Flow Field Flow Fractionation: A Powerful Method for the Preclinical Characterization of Lipid-Based Nanoparticles.
    Caputo F; Arnould A; Bacia M; Ling WL; Rustique E; Texier I; Mello AP; Couffin AC
    Mol Pharm; 2019 Feb; 16(2):756-767. PubMed ID: 30604620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-Property Relationships of Oligonucleotide Polyelectrolyte Complex Micelles.
    Lueckheide M; Vieregg JR; Bologna AJ; Leon L; Tirrell MV
    Nano Lett; 2018 Nov; 18(11):7111-7117. PubMed ID: 30339032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximization of loading and stability of ssDNA:iron oxide nanoparticle complexes formed through electrostatic interaction.
    Berti L; Woldeyesus T; Li Y; Lam KS
    Langmuir; 2010 Dec; 26(23):18293-9. PubMed ID: 21047109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased cellular uptake of peptide-modified PEGylated gold nanoparticles.
    He B; Yang D; Qin M; Zhang Y; He B; Dai W; Wang X; Zhang Q; Zhang H; Yin C
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):339-345. PubMed ID: 28993197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-delivery of HIV-1 entry inhibitor and nonnucleoside reverse transcriptase inhibitor shuttled by nanoparticles: cocktail therapeutic strategy for antiviral therapy.
    Li W; Yu F; Wang Q; Qi Q; Su S; Xie L; Lu L; Jiang S
    AIDS; 2016 Mar; 30(6):827-38. PubMed ID: 26595538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular delivery of oligonucleotide conjugates and dendrimer complexes.
    Juliano RL
    Ann N Y Acad Sci; 2006 Oct; 1082():18-26. PubMed ID: 17145920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of the N-Terminus of a Calcium Carbonate Precipitating Peptide Affects Calcium Carbonate Mineralization.
    Usui K; Yokota SI; Ozaki M; Sakashita S; Imai T; Tomizaki KY
    Protein Pept Lett; 2018; 25(1):42-47. PubMed ID: 29268680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the size of water-soluble nanoparticles and quantum dots by field-flow fractionation.
    Rameshwar T; Samal S; Lee S; Kim S; Cho J; Kim IS
    J Nanosci Nanotechnol; 2006 Aug; 6(8):2461-7. PubMed ID: 17037856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Surface Charge of Hyperbranched Polymers on Cytotoxicity, Dynamic Cellular Uptake and Localization, Hemotoxicity, and Pharmacokinetics in Mice.
    Chen L; Simpson JD; Fuchs AV; Rolfe BE; Thurecht KJ
    Mol Pharm; 2017 Dec; 14(12):4485-4497. PubMed ID: 29116801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide nanoparticle delivery of charge-neutral splice-switching morpholino oligonucleotides.
    Järver P; Zaghloul EM; Arzumanov AA; Saleh AF; McClorey G; Hammond SM; Hällbrink M; Langel Ü; Smith CI; Wood MJ; Gait MJ; El Andaloussi S
    Nucleic Acid Ther; 2015 Apr; 25(2):65-77. PubMed ID: 25594433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy.
    Lv S; Li M; Tang Z; Song W; Sun H; Liu H; Chen X
    Acta Biomater; 2013 Dec; 9(12):9330-42. PubMed ID: 23958784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zein-derived peptides as nanocarriers to increase the water solubility and stability of lutein.
    Jiao Y; Zheng X; Chang Y; Li D; Sun X; Liu X
    Food Funct; 2018 Jan; 9(1):117-123. PubMed ID: 29336438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic light scattering and transmission electron microscopy in drug delivery: a roadmap for correct characterization of nanoparticles and interpretation of results.
    Filippov SK; Khusnutdinov R; Murmiliuk A; Inam W; Zakharova LY; Zhang H; Khutoryanskiy VV
    Mater Horiz; 2023 Nov; 10(12):5354-5370. PubMed ID: 37814922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scavenger receptor-mediated uptake of cell-penetrating peptide nanocomplexes with oligonucleotides.
    Ezzat K; Helmfors H; Tudoran O; Juks C; Lindberg S; Padari K; El-Andaloussi S; Pooga M; Langel U
    FASEB J; 2012 Mar; 26(3):1172-80. PubMed ID: 22138034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable Discoidal Bicelles: A Platform of Lipid Nanocarriers for Cellular Delivery.
    Liu Y; Xia Y; Rad AT; Aresh W; Nieh MP
    Methods Mol Biol; 2017; 1522():273-282. PubMed ID: 27837547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.