These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31410799)

  • 1. Delivery of Antisense Oligonucleotides Mediated by a Hydrogel System: In Vitro and In Vivo Application in the Context of Spinal Cord Injury.
    Moreno PMD; Rodrigues T; Torrado M; Amaral IF; Pêgo AP
    Methods Mol Biol; 2019; 2036():205-219. PubMed ID: 31410799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligonucleotide-functionalized hydrogels for sustained release of small molecule (aptamer) therapeutics.
    Agrawal NK; Allen P; Song YH; Wachs RA; Du Y; Ellington AD; Schmidt CE
    Acta Biomater; 2020 Jan; 102():315-325. PubMed ID: 31760222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury.
    Moreno PMD; Ferreira AR; Salvador D; Rodrigues MT; Torrado M; Carvalho ED; Tedebark U; Sousa MM; Amaral IF; Wengel J; Pêgo AP
    Mol Ther Nucleic Acids; 2018 Jun; 11():393-406. PubMed ID: 29858074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrin-hyaluronic acid hydrogel-based delivery of antisense oligonucleotides for ADAMTS5 inhibition in co-delivered and resident joint cells in osteoarthritis.
    Garcia JP; Stein J; Cai Y; Riemers F; Wexselblatt E; Wengel J; Tryfonidou M; Yayon A; Howard KA; Creemers LB
    J Control Release; 2019 Jan; 294():247-258. PubMed ID: 30572032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal distribution and metabolism of 2'-O-(2-methoxyethyl)-modified oligonucleotides after intrathecal administration in rats.
    Butler M; Hayes CS; Chappell A; Murray SF; Yaksh TL; Hua XY
    Neuroscience; 2005; 131(3):705-15. PubMed ID: 15730875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angubindin-1 opens the blood-brain barrier in vivo for delivery of antisense oligonucleotide to the central nervous system.
    Zeniya S; Kuwahara H; Daizo K; Watari A; Kondoh M; Yoshida-Tanaka K; Kaburagi H; Asada K; Nagata T; Nagahama M; Yagi K; Yokota T
    J Control Release; 2018 Aug; 283():126-134. PubMed ID: 29753959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted Delivery of Antisense Oligonucleotides Using Neurotensin Peptides.
    Nikan M; Tanowitz M; Dwyer CA; Jackson M; Gaus HJ; Swayze EE; Rigo F; Seth PP; Prakash TP
    J Med Chem; 2020 Aug; 63(15):8471-8484. PubMed ID: 32677436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic hydrogels as carriers in antisense therapy: preliminary evaluation of an oligodeoxynucleotide covalent conjugate with a copolymer of 1-vinyl-2-pyrrolidinone and 2-hydroxyethyl methacrylate.
    Lou X; Garrett KL; Rakoczy PE; Chirila TV
    J Biomater Appl; 2001 Apr; 15(4):307-20. PubMed ID: 11336385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selecting optimal oligonucleotide composition for maximal antisense effect following streptolysin O-mediated delivery into human leukaemia cells.
    Giles RV; Spiller DG; Grzybowski J; Clark RE; Nicklin P; Tidd DM
    Nucleic Acids Res; 1998 Apr; 26(7):1567-75. PubMed ID: 9512525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current status of delivery systems to improve target efficacy of oligonucleotides.
    Shoji Y; Nakashima H
    Curr Pharm Des; 2004; 10(7):785-96. PubMed ID: 15032703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential of antisense as a CNS therapeutic.
    Godfray J; Estibeiro P
    Expert Opin Ther Targets; 2003 Jun; 7(3):363-76. PubMed ID: 12783572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury.
    Baumann MD; Kang CE; Tator CH; Shoichet MS
    Biomaterials; 2010 Oct; 31(30):7631-9. PubMed ID: 20656347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ hybridization histochemistry reveals a diversity of GABAA receptor subunit mRNAs in neurons of the rat spinal cord and dorsal root ganglia.
    Persohn E; Malherbe P; Richards JG
    Neuroscience; 1991; 42(2):497-507. PubMed ID: 1654537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticulate systems for the delivery of antisense oligonucleotides.
    Lambert G; Fattal E; Couvreur P
    Adv Drug Deliv Rev; 2001 Mar; 47(1):99-112. PubMed ID: 11251248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oral delivery of siRNA and antisense oligonucleotides.
    Akhtar S
    J Drug Target; 2009 Aug; 17(7):491-5. PubMed ID: 19530907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications.
    Benizri S; Gissot A; Martin A; Vialet B; Grinstaff MW; Barthélémy P
    Bioconjug Chem; 2019 Feb; 30(2):366-383. PubMed ID: 30608140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maturation of opioid sensitivity of fetal mouse dorsal root ganglion neuron perikarya in organotypic cultures: regulation by spinal cord.
    Chalazonitis A; Crain SM
    Neuroscience; 1986 Apr; 17(4):1181-98. PubMed ID: 3520378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The delivery of antisense therapeutics.
    Akhtar S; Hughes MD; Khan A; Bibby M; Hussain M; Nawaz Q; Double J; Sayyed P
    Adv Drug Deliv Rev; 2000 Oct; 44(1):3-21. PubMed ID: 11035194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural modifications of antisense oligonucleotides.
    Urban E; Noe CR
    Farmaco; 2003 Mar; 58(3):243-58. PubMed ID: 12620420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antisense oligonucleotide technology: from EST to therapeutics.
    Giles RV
    Curr Opin Mol Ther; 2000 Jun; 2(3):238-52. PubMed ID: 11249617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.