BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31410803)

  • 1. Identifying Suitable Target Regions and Analyzing Off-Target Effects of Therapeutic Oligonucleotides.
    Pedersen L; Hagedorn PH; Koch T
    Methods Mol Biol; 2019; 2036():261-282. PubMed ID: 31410803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overview on AON design.
    Aartsma-Rus A
    Methods Mol Biol; 2012; 867():117-29. PubMed ID: 22454058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carba-LNA-5MeC/A/G/T modified oligos show nucleobase-specific modulation of 3'-exonuclease activity, thermodynamic stability, RNA selectivity, and RNase H elicitation: synthesis and biochemistry.
    Upadhayaya R; Deshpande SG; Li Q; Kardile RA; Sayyed AY; Kshirsagar EK; Salunke RV; Dixit SS; Zhou C; Földesi A; Chattopadhyaya J
    J Org Chem; 2011 Jun; 76(11):4408-31. PubMed ID: 21500818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of multiple-turnover capability of locked nucleic acid antisense oligonucleotides in cell-free RNase H-mediated antisense reaction and in mice.
    Yamamoto T; Fujii N; Yasuhara H; Wada S; Wada F; Shigesada N; Harada-Shiba M; Obika S
    Nucleic Acid Ther; 2014 Aug; 24(4):283-90. PubMed ID: 24758560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic criteria for high hit rate antisense oligonucleotide design.
    Matveeva OV; Mathews DH; Tsodikov AD; Shabalina SA; Gesteland RF; Atkins JF; Freier SM
    Nucleic Acids Res; 2003 Sep; 31(17):4989-94. PubMed ID: 12930948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antisense Oligonucleotide Design and Evaluation of Splice-Modulating Properties Using Cell-Based Assays.
    Slijkerman R; Kremer H; van Wijk E
    Methods Mol Biol; 2018; 1828():519-530. PubMed ID: 30171565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus.
    Liang XH; Sun H; Nichols JG; Crooke ST
    Mol Ther; 2017 Sep; 25(9):2075-2092. PubMed ID: 28663102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antisense therapeutics: is it as simple as complementary base recognition?
    Agrawal S; Kandimalla ER
    Mol Med Today; 2000 Feb; 6(2):72-81. PubMed ID: 10652480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PFRED: A computational platform for siRNA and antisense oligonucleotides design.
    Sciabola S; Xi H; Cruz D; Cao Q; Lawrence C; Zhang T; Rotstein S; Hughes JD; Caffrey DR; Stanton RV
    PLoS One; 2021; 16(1):e0238753. PubMed ID: 33481821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double sugar and phosphate backbone-constrained nucleotides: synthesis, structure, stability, and their incorporation into oligodeoxynucleotides.
    Zhou C; Plashkevych O; Chattopadhyaya J
    J Org Chem; 2009 May; 74(9):3248-65. PubMed ID: 19348480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using RNA-seq to Assess Off-Target Effects of Antisense Oligonucleotides in Human Cell Lines.
    Michel S; Schirduan K; Shen Y; Klar R; Tost J; Jaschinski F
    Mol Diagn Ther; 2021 Jan; 25(1):77-85. PubMed ID: 33314011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technical improvements in the computational target search for antisense oligonucleotides.
    Far RK; Leppert J; Frank K; Sczakiel G
    Oligonucleotides; 2005; 15(3):223-33. PubMed ID: 16201910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel computation of genome-scale RNA secondary structure to detect structural constraints on human genome.
    Kawaguchi R; Kiryu H
    BMC Bioinformatics; 2016 May; 17(1):203. PubMed ID: 27153986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and accurate determination of sites along the FUT2 in vitro transcript that are accessible to antisense oligonucleotides by application of secondary structure predictions and RNase H in combination with MALDI-TOF mass spectrometry.
    Gabler A; Krebs S; Seichter D; Förster M
    Nucleic Acids Res; 2003 Aug; 31(15):e79. PubMed ID: 12888531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antisense oligonucleotides.
    Kashihara N; Maeshima Y; Makino H
    Exp Nephrol; 1998; 6(1):84-8. PubMed ID: 9523178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview of sugar-modified oligonucleotides for antisense therapeutics.
    Prakash TP
    Chem Biodivers; 2011 Sep; 8(9):1616-41. PubMed ID: 21922654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antisense Oligonucleotides Internally Labeled with Peptides Show Improved Target Recognition and Stability to Enzymatic Degradation.
    Taskova M; Madsen CS; Jensen KJ; Hansen LH; Vester B; Astakhova K
    Bioconjug Chem; 2017 Mar; 28(3):768-774. PubMed ID: 28292178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts.
    Burel SA; Hart CE; Cauntay P; Hsiao J; Machemer T; Katz M; Watt A; Bui HH; Younis H; Sabripour M; Freier SM; Hung G; Dan A; Prakash TP; Seth PP; Swayze EE; Bennett CF; Crooke ST; Henry SP
    Nucleic Acids Res; 2016 Mar; 44(5):2093-109. PubMed ID: 26553810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational selection of antisense oligonucleotide sequences.
    Smith L; Andersen KB; Hovgaard L; Jaroszewski JW
    Eur J Pharm Sci; 2000 Sep; 11(3):191-8. PubMed ID: 11042224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary structure of the 5'-region of PGY1/MDR1 mRNA.
    Kostenko EV; Beabealashvilly RS; Vlassov VV; Zenkova MA
    FEBS Lett; 2000 Jun; 475(3):181-6. PubMed ID: 10869552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.