These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31410828)

  • 1. Effect of installed capacity size on environmental efficiency across 528 thermal power stations in North China.
    Wu C; Oh K; Long X; Zhang J
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29822-29833. PubMed ID: 31410828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The environmental effect of capacity utilization in thermal power plants: evidence from interprovincial carbon emissions in China.
    Wang Y; Chen J
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):30399-30412. PubMed ID: 31440971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-carbon trade-off in China's coal power industry.
    Zhang C; Anadon LD; Mo H; Zhao Z; Liu Z
    Environ Sci Technol; 2014 Oct; 48(19):11082-9. PubMed ID: 25215622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Installation Planning in Regional Thermal Power Industry for Emissions Reduction Based on an Emissions Inventory.
    Zhang Y; Wu J; Zhou C; Zhang Q
    Int J Environ Res Public Health; 2019 Mar; 16(6):. PubMed ID: 30875942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benefits of current and future policies on emissions of China's coal-fired power sector indicated by continuous emission monitoring.
    Zhang Y; Bo X; Zhao Y; Nielsen CP
    Environ Pollut; 2019 Aug; 251():415-424. PubMed ID: 31103001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-carbon development pathways for provincial-level thermal power plants in China by mid-century.
    Li R; Tang BJ; Shen M; Zhang C
    J Environ Manage; 2023 Sep; 342():118309. PubMed ID: 37285772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Did an Ultra-Low Emissions Policy on Coal-Fueled Thermal Power Reduce the Harmful Emissions? Evidence from Three Typical Air Pollutants Abatement in China.
    Ye P; Xia S; Xiong Y; Liu C; Li F; Liang J; Zhang H
    Int J Environ Res Public Health; 2020 Nov; 17(22):. PubMed ID: 33218109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of technical inefficiency in China's coal-fired power plants and policy recommendations for CO
    Nakaishi T; Kagawa S; Takayabu H; Lin C
    Environ Sci Pollut Res Int; 2021 Oct; 28(37):52064-52081. PubMed ID: 34002311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.
    Xu C; Hong J; Ren Y; Wang Q; Yuan X
    Environ Sci Pollut Res Int; 2015 Aug; 22(16):12384-95. PubMed ID: 25903190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decadal emission estimates of carbon dioxide, sulfur dioxide, and nitric oxide emissions from coal burning in electric power generation plants in India.
    Mittal ML; Sharma C; Singh R
    Environ Monit Assess; 2014 Oct; 186(10):6857-66. PubMed ID: 25004854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on embodied CO
    Chen M; Wu S; Lei Y; Li S
    Environ Sci Pollut Res Int; 2018 May; 25(14):14068-14082. PubMed ID: 29520546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal-spatial characteristics and source apportionment of PM
    Gao J; Wang K; Wang Y; Liu S; Zhu C; Hao J; Liu H; Hua S; Tian H
    Environ Pollut; 2018 Feb; 233():714-724. PubMed ID: 29126093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal path for controlling pollution emissions in the Chinese electric power industry considering technological heterogeneity.
    Yu X; Jin L; Wang Q; Zhou D
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):11087-11099. PubMed ID: 30790169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term (2006-2015) variations and relations of multiple atmospheric pollutants based on multi-remote sensing data over the North China Plain.
    Si Y; Wang H; Cai K; Chen L; Zhou Z; Li S
    Environ Pollut; 2019 Dec; 255(Pt 3):113323. PubMed ID: 31610386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Case study on incentive mechanism of energy efficiency retrofit in coal-fueled power plant in China.
    Yuan D; Guo X; Cao Y; He L; Wang J; Xi B; Li J; Ma W; Zhang M
    ScientificWorldJournal; 2012; 2012():841636. PubMed ID: 23365532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of three recent coal-fired power plant closings on Pittsburgh air quality: A natural experiment.
    Russell MC; Belle JH; Liu Y
    J Air Waste Manag Assoc; 2017 Jan; 67(1):3-16. PubMed ID: 27027572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.
    Tian H; Wang Y; Cheng K; Qu Y; Hao J; Xue Z; Chai F
    J Air Waste Manag Assoc; 2012 May; 62(5):576-86. PubMed ID: 22696807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Health risk assessment of China's main air pollutants.
    Sun J; Zhou T
    BMC Public Health; 2017 Feb; 17(1):212. PubMed ID: 28219424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicted impact of thermal power generation emission control measures in the Beijing-Tianjin-Hebei region on air pollution over Beijing, China.
    Wang L; Li P; Yu S; Mehmood K; Li Z; Chang S; Liu W; Rosenfeld D; Flagan RC; Seinfeld JH
    Sci Rep; 2018 Jan; 8(1):934. PubMed ID: 29343860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-carbon electricity generation-based dynamic equilibrium strategy for carbon dioxide emissions reduction in the coal-fired power enterprise.
    Xu J; Feng Q; Lv C; Huang Q
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36732-36753. PubMed ID: 31741269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.