These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 31410835)
21. Effect of green and chemically synthesized titanium dioxide nanoparticles on cadmium accumulation in wheat grains and potential dietary health risk: A field investigation. Irshad MA; Rehman MZU; Anwar-Ul-Haq M; Rizwan M; Nawaz R; Shakoor MB; Wijaya L; Alyemeni MN; Ahmad P; Ali S J Hazard Mater; 2021 Aug; 415():125585. PubMed ID: 33721774 [TBL] [Abstract][Full Text] [Related]
22. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Mahmud JA; Hasanuzzaman M; Nahar K; Bhuyan MHMB; Fujita M Ecotoxicol Environ Saf; 2018 Jan; 147():990-1001. PubMed ID: 29976011 [TBL] [Abstract][Full Text] [Related]
23. Cadmium-mediated morphological, biochemical and physiological tuning in three different Anabaena species. Singh PK; Wang W; Shrivastava AK Aquat Toxicol; 2018 Sep; 202():36-45. PubMed ID: 30007153 [TBL] [Abstract][Full Text] [Related]
24. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Rizwan M; Ali S; Ali B; Adrees M; Arshad M; Hussain A; Zia Ur Rehman M; Waris AA Chemosphere; 2019 Jan; 214():269-277. PubMed ID: 30265934 [TBL] [Abstract][Full Text] [Related]
25. TiO Wang J; Dai H; Nie Y; Wang M; Yang Z; Cheng L; Liu Y; Chen S; Zhao G; Wu L; Guang S; Xu A Ecotoxicol Environ Saf; 2018 Oct; 162():160-169. PubMed ID: 29990727 [TBL] [Abstract][Full Text] [Related]
26. Effects of surfactants on the combined toxicity of TiO Li M; Pei J; Tang X; Guo X J Environ Sci (China); 2018 Dec; 74():126-133. PubMed ID: 30340666 [TBL] [Abstract][Full Text] [Related]
27. How could actinobacteria augment the growth and redox homeostasis in barley plants grown in TiO Alsiary WA; AbdElgawad H; Madany MMY Plant Physiol Biochem; 2023 Sep; 202():107943. PubMed ID: 37651952 [TBL] [Abstract][Full Text] [Related]
28. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks? Zou X; Shi J; Zhang H Aquat Toxicol; 2014 Sep; 154():168-75. PubMed ID: 24907921 [TBL] [Abstract][Full Text] [Related]
29. The use of water lettuce (Pistia stratiotes L.) for rhizofiltration of a highly polluted solution by cadmium and lead. Veselý T; Tlustos P; Száková J Int J Phytoremediation; 2011 Oct; 13(9):859-72. PubMed ID: 21972509 [TBL] [Abstract][Full Text] [Related]
30. Stress hardening under long-term cadmium treatment is correlated with the activation of antioxidative defence and iron acquisition of chloroplasts in Populus. Solti Á; Sárvári É; Szöllősi E; Tóth B; Mészáros I; Fodor F; Szigeti Z Z Naturforsch C J Biosci; 2016 Sep; 71(9-10):323-334. PubMed ID: 27542199 [TBL] [Abstract][Full Text] [Related]
31. Phytoremediation potential of Azolla filiculoides for sodium dodecyl benzene sulfonate (SDBS) surfactant considering some physiological responses, effects of operational parameters and biodegradation of surfactant. Masoudian Z; Salehi-Lisar SY; Norastehnia A Environ Sci Pollut Res Int; 2020 Jun; 27(16):20358-20369. PubMed ID: 32240507 [TBL] [Abstract][Full Text] [Related]
32. Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves. Yan H; Filardo F; Hu X; Zhao X; Fu D Environ Sci Pollut Res Int; 2016 Feb; 23(4):3758-69. PubMed ID: 26498815 [TBL] [Abstract][Full Text] [Related]
33. Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Kaya C; Okant M; Ugurlar F; Alyemeni MN; Ashraf M; Ahmad P Chemosphere; 2019 Jun; 225():627-638. PubMed ID: 30901656 [TBL] [Abstract][Full Text] [Related]
34. The impact of polystyrene nanoplastics on plants in the scenario of increasing temperatures: The case of Azolla filiculoides Lam. Bottega S; Fontanini D; Ruffini Castiglione M; Spanò C Plant Physiol Biochem; 2024 Sep; 214():108946. PubMed ID: 39032448 [TBL] [Abstract][Full Text] [Related]
35. Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata. Phetsombat S; Kruatrachue M; Pokethitiyook P; Upatham S J Environ Biol; 2006 Oct; 27(4):645-52. PubMed ID: 17405325 [TBL] [Abstract][Full Text] [Related]
36. Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Zhang Y; Xu S; Yang S; Chen Y Protoplasma; 2015 May; 252(3):911-24. PubMed ID: 25398649 [TBL] [Abstract][Full Text] [Related]
37. Potential of the aquatic fern Azolla filiculoides in biodegradation of an azo dye: modeling of experimental results by artificial neural networks. Khataee AR; Movafeghi A; Vafaei F; Lisar SY; Zarei M Int J Phytoremediation; 2013; 15(8):729-42. PubMed ID: 23819271 [TBL] [Abstract][Full Text] [Related]
38. Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: growth inhibition, oxidative stress and internalization. Xia B; Chen B; Sun X; Qu K; Ma F; Du M Sci Total Environ; 2015 Mar; 508():525-33. PubMed ID: 25483108 [TBL] [Abstract][Full Text] [Related]
39. Profiling of rutin-mediated alleviation of cadmium-induced oxidative stress in Zygophyllum fabago. Yildiztugay E; Ozfidan-Konakci C Environ Toxicol; 2015 Jul; 30(7):816-35. PubMed ID: 24488808 [TBL] [Abstract][Full Text] [Related]
40. Phenanthrene stress response and phytoremediation potential of free-floating fern Kösesakal T; Seyhan M Int J Phytoremediation; 2023; 25(2):207-220. PubMed ID: 35501688 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]