BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31410859)

  • 1. Cryptochromes integrate green light signals into the circadian system.
    Battle MW; Jones MA
    Plant Cell Environ; 2020 Jan; 43(1):16-27. PubMed ID: 31410859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock.
    Somers DE; Devlin PF; Kay SA
    Science; 1998 Nov; 282(5393):1488-90. PubMed ID: 9822379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focusing on the nuclear and subnuclear dynamics of light and circadian signalling.
    Ronald J; Davis SJ
    Plant Cell Environ; 2019 Oct; 42(10):2871-2884. PubMed ID: 31369151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of light and circadian signals that regulate chloroplast transcription by a nuclear-encoded sigma factor.
    Belbin FE; Noordally ZB; Wetherill SJ; Atkins KA; Franklin KA; Dodd AN
    New Phytol; 2017 Jan; 213(2):727-738. PubMed ID: 27716936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryptochromes suppress leaf senescence in response to blue light in Arabidopsis.
    Kozuka T; Oka Y; Kohzuma K; Kusaba M
    Plant Physiol; 2023 Apr; 191(4):2506-2518. PubMed ID: 36715309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocycle and signaling mechanisms of plant cryptochromes.
    Ahmad M
    Curr Opin Plant Biol; 2016 Oct; 33():108-115. PubMed ID: 27423124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of gene expression by light.
    Casal JJ; Yanovsky MJ
    Int J Dev Biol; 2005; 49(5-6):501-11. PubMed ID: 16096960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant cell biology: Blue light gives CRY the blues.
    Zlotorynski E
    Nat Rev Mol Cell Biol; 2016 Dec; 17(12):740. PubMed ID: 27826148
    [No Abstract]   [Full Text] [Related]  

  • 9. A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis.
    Wang X; Wang Q; Han YJ; Liu Q; Gu L; Yang Z; Su J; Liu B; Zuo Z; He W; Wang J; Liu B; Matsui M; Kim JI; Oka Y; Lin C
    Plant J; 2017 Nov; 92(3):426-436. PubMed ID: 28833729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression.
    Yang YJ; Zuo ZC; Zhao XY; Li X; Klejnot J; Li Y; Chen P; Liang SP; Yu XH; Liu XM; Lin CT
    Mol Plant; 2008 Jan; 1(1):167-77. PubMed ID: 20031923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geomagnetic field impacts on cryptochrome and phytochrome signaling.
    Agliassa C; Narayana R; Christie JM; Maffei ME
    J Photochem Photobiol B; 2018 Aug; 185():32-40. PubMed ID: 29864723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis.
    Tóth R; Kevei E; Hall A; Millar AJ; Nagy F; Kozma-Bognár L
    Plant Physiol; 2001 Dec; 127(4):1607-16. PubMed ID: 11743105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arabidopsis cryptochrome 2 forms photobodies with TCP22 under blue light and regulates the circadian clock.
    Mo W; Zhang J; Zhang L; Yang Z; Yang L; Yao N; Xiao Y; Li T; Li Y; Zhang G; Bian M; Du X; Zuo Z
    Nat Commun; 2022 May; 13(1):2631. PubMed ID: 35551190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond the photocycle-how cryptochromes regulate photoresponses in plants?
    Wang Q; Zuo Z; Wang X; Liu Q; Gu L; Oka Y; Lin C
    Curr Opin Plant Biol; 2018 Oct; 45(Pt A):120-126. PubMed ID: 29913346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quadruple photoreceptor mutant still keeps track of time.
    Yanovsky MJ; Mazzella MA; Casal JJ
    Curr Biol; 2000 Aug; 10(16):1013-5. PubMed ID: 10985392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptochromes: enabling plants and animals to determine circadian time.
    Cashmore AR
    Cell; 2003 Sep; 114(5):537-43. PubMed ID: 13678578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2.
    Liu Q; Wang Q; Deng W; Wang X; Piao M; Cai D; Li Y; Barshop WD; Yu X; Zhou T; Liu B; Oka Y; Wohlschlegel J; Zuo Z; Lin C
    Nat Commun; 2017 May; 8():15234. PubMed ID: 28492234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical-Induced Inhibition of Blue Light-Mediated Seedling Development Caused by Disruption of Upstream Signal Transduction Involving Cryptochromes in Arabidopsis thaliana.
    Ong WD; Okubo-Kurihara E; Kurihara Y; Shimada S; Makita Y; Kawashima M; Honda K; Kondoh Y; Watanabe N; Osada H; Cutler SR; Sudesh K; Matsui M
    Plant Cell Physiol; 2017 Jan; 58(1):95-105. PubMed ID: 28011868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light signals and flowering.
    Thomas B
    J Exp Bot; 2006; 57(13):3387-93. PubMed ID: 16980594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protoplast System for Studying Blue-Light-Dependent Formation of Cryptochrome Photobody.
    Lyu X; Li H; Liu B
    Methods Mol Biol; 2021; 2297():105-113. PubMed ID: 33656674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.