BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31411247)

  • 1. Poly(trimethylene carbonate-co-L-lactide) electrospun scaffolds for use as vascular grafts.
    Braghirolli DI; Caberlon B; Gamba D; Petry J; Dias ML; Pranke P
    Braz J Med Biol Res; 2019; 52(8):e8318. PubMed ID: 31411247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-(L)-lactide) as an elastomeric scaffold for vascular engineering.
    Dargaville BL; Vaquette C; Rasoul F; Cooper-White JJ; Campbell JH; Whittaker AK
    Acta Biomater; 2013 Jun; 9(6):6885-97. PubMed ID: 23416575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meniscal repair with additive manufacture of bioresorbable polymer: From physicochemical characterization to implantation of 3D printed poly (L-co-D, L lactide-co-trimethylene carbonate) with autologous stem cells in rabbits.
    Komatsu D; Cabrera ARE; Quevedo BV; Asami J; Cristina Motta A; de Moraes SC; Duarte MAT; Hausen MA; Aparecida de Rezende Duek E
    J Biomater Appl; 2024 Jul; 39(1):66-79. PubMed ID: 38646887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun scaffolds functionalized with heparin and vascular endothelial growth factor increase the proliferation of endothelial progenitor cells.
    Braghirolli DI; Helfer VE; Chagastelles PC; Dalberto TP; Gamba D; Pranke P
    Biomed Mater; 2017 Mar; 12(2):025003. PubMed ID: 28140340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold.
    Mun CH; Jung Y; Kim SH; Kim HC; Kim SH
    Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering.
    Song Y; Kamphuis MM; Zhang Z; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW
    Acta Biomater; 2010 Apr; 6(4):1269-77. PubMed ID: 19818420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW
    Tissue Eng Part A; 2011 Feb; 17(3-4):381-7. PubMed ID: 20807005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dynamically cultured collagen/cells-incorporated elastic scaffold for small-diameter vascular grafts.
    Park IS; Kim YH; Jung Y; Kim SH; Kim SH
    J Biomater Sci Polym Ed; 2012; 23(14):1807-20. PubMed ID: 21943800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-linked poly(trimethylene carbonate-co-L-lactide) as a biodegradable, elastomeric scaffold for vascular engineering applications.
    Dargaville BL; Vaquette C; Peng H; Rasoul F; Chau YQ; Cooper-White JJ; Campbell JH; Whittaker AK
    Biomacromolecules; 2011 Nov; 12(11):3856-69. PubMed ID: 21999900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts.
    Park IS; Kim SH; Kim YH; Kim IH; Kim SH
    J Biomater Sci Polym Ed; 2009; 20(11):1645-60. PubMed ID: 19619403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent immobilization of stem cell inducing/recruiting factor and heparin on cell-free small-diameter vascular graft for accelerated in situ tissue regeneration.
    Shafiq M; Jung Y; Kim SH
    J Biomed Mater Res A; 2016 Jun; 104(6):1352-71. PubMed ID: 26822178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ blood vessel regeneration using neuropeptide substance P-conjugated small-diameter vascular grafts.
    Shafiq M; Wang L; Zhi D; Zhang Q; Wang K; Wang L; Kim DH; Kong D; Kim SH
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1669-1683. PubMed ID: 30315717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of photo-carbon monoxide releasing materials into electrospun scaffolds for vascular tissue engineering.
    Michael E; Abeyrathna N; Patel AV; Liao Y; Bashur CA
    Biomed Mater; 2016 Mar; 11(2):025009. PubMed ID: 27007251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property.
    Wang W; Hu J; He C; Nie W; Feng W; Qiu K; Zhou X; Gao Y; Wang G
    J Biomed Mater Res A; 2015 May; 103(5):1784-97. PubMed ID: 25196988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional electrospun poly(lactide-co-ɛ-caprolactone) for small-diameter vascular grafts.
    Mun CH; Jung Y; Kim SH; Lee SH; Kim HC; Kwon IK; Kim SH
    Tissue Eng Part A; 2012 Aug; 18(15-16):1608-16. PubMed ID: 22462723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Vermes I; Poot AA; Feijen J; Grijpma DW
    J Biomed Mater Res A; 2010 Nov; 95(2):440-6. PubMed ID: 20648539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stiffness of Aligned Fibers Regulates the Phenotypic Expression of Vascular Smooth Muscle Cells.
    Yi B; Shen Y; Tang H; Wang X; Li B; Zhang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6867-6880. PubMed ID: 30676736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering.
    Xu C; Inai R; Kotaki M; Ramakrishna S
    Tissue Eng; 2004; 10(7-8):1160-8. PubMed ID: 15363172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A drug eluting poly(trimethylene carbonate)/poly(lactic acid)-reinforced nanocomposite for the functional delivery of osteogenic molecules.
    Zhang X; Geven MA; Wang X; Qin L; Grijpma DW; Peijs T; Eglin D; Guillaume O; Gautrot JE
    Int J Nanomedicine; 2018; 13():5701-5718. PubMed ID: 30288042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.