These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
536 related articles for article (PubMed ID: 31411359)
1. 16.67% Rigid and 14.06% Flexible Organic Solar Cells Enabled by Ternary Heterojunction Strategy. Yan T; Song W; Huang J; Peng R; Huang L; Ge Z Adv Mater; 2019 Sep; 31(39):e1902210. PubMed ID: 31411359 [TBL] [Abstract][Full Text] [Related]
2. Ternary Organic Solar Cells with Efficiency >16.5% Based on Two Compatible Nonfullerene Acceptors. Song J; Li C; Zhu L; Guo J; Xu J; Zhang X; Weng K; Zhang K; Min J; Hao X; Zhang Y; Liu F; Sun Y Adv Mater; 2019 Dec; 31(52):e1905645. PubMed ID: 31736170 [TBL] [Abstract][Full Text] [Related]
3. High-Performance Ternary Organic Solar Cells with Controllable Morphology via Sequential Layer-by-Layer Deposition. Ren M; Zhang G; Chen Z; Xiao J; Jiao X; Zou Y; Yip HL; Cao Y ACS Appl Mater Interfaces; 2020 Mar; 12(11):13077-13086. PubMed ID: 32079401 [TBL] [Abstract][Full Text] [Related]
4. Enhancing Open-Circuit Voltage of High-Efficiency Nonfullerene Ternary Solar Cells with a Star-Shaped Acceptor. Cai G; Li Y; Zhou J; Xue P; Liu K; Wang J; Xie Z; Li G; Zhan X; Lu X ACS Appl Mater Interfaces; 2020 Nov; 12(45):50660-50667. PubMed ID: 33112591 [TBL] [Abstract][Full Text] [Related]
5. Highly Efficient Ternary-Blend Polymer Solar Cells Enabled by a Nonfullerene Acceptor and Two Polymer Donors with a Broad Composition Tolerance. Xu X; Bi Z; Ma W; Wang Z; Choy WCH; Wu W; Zhang G; Li Y; Peng Q Adv Mater; 2017 Dec; 29(46):. PubMed ID: 29044740 [TBL] [Abstract][Full Text] [Related]
6. Ternary Organic Solar Cells with Coumarin7 as the Donor Exhibiting Greater Than 10% Power Conversion Efficiency and a High Fill Factor of 75. Chen XW; Tao SL; Fan C; Chen DC; Zhou L; Lin H; Zheng CJ; Su SJ ACS Appl Mater Interfaces; 2017 Sep; 9(35):29907-29916. PubMed ID: 28809535 [TBL] [Abstract][Full Text] [Related]
7. Random Copolymerization Strategy for Host Polymer Donor PM6 Enables Improved Efficiency Both in Binary and Ternary Organic Solar Cells. Yang N; Cheng Y; Kim S; Huang B; Liu Z; Deng J; Wang J; Yang C; Wu F; Chen L ChemSusChem; 2022 Apr; 15(8):e202200138. PubMed ID: 35212463 [TBL] [Abstract][Full Text] [Related]
8. Simultaneously enhancing the photovoltaic parameters of ternary organic solar cells by incorporating a fused ring electron acceptor. Zhang M; Chen X; Wang L; Deng X; Tan S RSC Adv; 2023 Jun; 13(25):17354-17361. PubMed ID: 37304790 [TBL] [Abstract][Full Text] [Related]
9. Design of Near-Infrared Nonfullerene Acceptor with Ultralow Nonradiative Voltage Loss for High-Performance Semitransparent Ternary Organic Solar Cells. Liu W; Sun S; Zhou L; Cui Y; Zhang W; Hou J; Liu F; Xu S; Zhu X Angew Chem Int Ed Engl; 2022 May; 61(19):e202116111. PubMed ID: 34962046 [TBL] [Abstract][Full Text] [Related]
10. Enhanced and Balanced Charge Transport Boosting Ternary Solar Cells Over 17% Efficiency. Li D; Zhu L; Liu X; Xiao W; Yang J; Ma R; Ding L; Liu F; Duan C; Fahlman M; Bao Q Adv Mater; 2020 Aug; 32(34):e2002344. PubMed ID: 32686255 [TBL] [Abstract][Full Text] [Related]
11. New Medium-Bandgap Nonfused Ring Guest Acceptor with a Higher-Lying LUMO Level Enables High-Performance Ternary Organic Solar Cells. Zhou Z; Xu Y; Yang J; Zhang S; Jin S; Li H; Zhu W; Liu Y ACS Appl Mater Interfaces; 2023 Sep; 15(36):42792-42801. PubMed ID: 37650699 [TBL] [Abstract][Full Text] [Related]
12. Achieving 19% Power Conversion Efficiency in Planar-Mixed Heterojunction Organic Solar Cells Using a Pseudosymmetric Electron Acceptor. Gao W; Qi F; Peng Z; Lin FR; Jiang K; Zhong C; Kaminsky W; Guan Z; Lee CS; Marks TJ; Ade H; Jen AK Adv Mater; 2022 Aug; 34(32):e2202089. PubMed ID: 35724397 [TBL] [Abstract][Full Text] [Related]
13. A Simple Dithieno[3,2-b:2',3'-d]pyrrol-Rhodanine Molecular Third Component Enables Over 16.7% Efficiency and Stable Organic Solar Cells. Wang H; Yang L; Lin PC; Chueh CC; Liu X; Qu S; Guang S; Yu J; Tang W Small; 2021 May; 17(18):e2007746. PubMed ID: 33738971 [TBL] [Abstract][Full Text] [Related]
14. Over 15% Efficiency in Ternary Organic Solar Cells by Enhanced Charge Transport and Reduced Energy Loss. Wang H; Zhang Z; Yu J; Lin PC; Chueh CC; Liu X; Guang S; Qu S; Tang W ACS Appl Mater Interfaces; 2020 May; 12(19):21633-21640. PubMed ID: 32314906 [TBL] [Abstract][Full Text] [Related]
15. Resonant Energy Transfer-Mediated Efficient Hole Transfer in the Ternary Blend Organic Solar Cells. Yadav S; Shivanna R; Mohapatra AA; Sawhney N; Gangadharappa C; Swaraj S; Rao A; Friend RH; Patil S J Phys Chem Lett; 2023 Jul; 14(29):6601-6609. PubMed ID: 37459166 [TBL] [Abstract][Full Text] [Related]
16. Efficient Medium Bandgap Electron Acceptor Based on Diketopyrrolopyrrole and Furan for Efficient Ternary Organic Solar Cells. Yadagiri B; Narayanaswamy K; Sharma GD; Singh SP ACS Appl Mater Interfaces; 2022 Apr; 14(16):18751-18763. PubMed ID: 35412303 [TBL] [Abstract][Full Text] [Related]
17. Advancing Integration of Direct C-H Arylation-Derived Star-Shaped Oligomers as Second Acceptors for Ternary Organic Solar Cells. Yang LJ; Wu Y; Murugan P; Liu P; Qiu ZY; Peng YL; Li ZF; Liu SY ACS Appl Mater Interfaces; 2024 May; 16(20):26348-26359. PubMed ID: 38728664 [TBL] [Abstract][Full Text] [Related]
18. Ternary Organic Solar Cells Based on a Wide-Bandgap Polymer with Enhanced Power Conversion Efficiencies. Hwang H; Sin DH; Park C; Cho K Sci Rep; 2019 Aug; 9(1):12081. PubMed ID: 31427610 [TBL] [Abstract][Full Text] [Related]
19. Employing a Narrow-Band-Gap Mediator in Ternary Solar Cells for Enhanced Photovoltaic Performance. Xiao L; Mao H; Li Z; Yan C; Liu J; Liu Y; Reimer JA; Min Y; Liu Y ACS Appl Mater Interfaces; 2020 Apr; 12(14):16387-16393. PubMed ID: 32180392 [TBL] [Abstract][Full Text] [Related]
20. Rylene-Fullerene Hybrid an Emerging Electron Acceptor for High-Performing and Photothermal-Stable Ternary Solar Cells. Wei Y; Liang N; Jiang W; Zhai T; Wang Z Small; 2022 Jan; 18(4):e2104060. PubMed ID: 34825446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]