These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31411794)

  • 1. DNA Origami Nanoplate-Based Emulsion with Nanopore Function.
    Ishikawa D; Suzuki Y; Kurokawa C; Ohara M; Tsuchiya M; Morita M; Yanagisawa M; Endo M; Kawano R; Takinoue M
    Angew Chem Int Ed Engl; 2019 Oct; 58(43):15299-15303. PubMed ID: 31411794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic permeability and mechanical properties of DNA origami nanoplates on solid-state nanopores.
    Plesa C; Ananth AN; Linko V; Gülcher C; Katan AJ; Dietz H; Dekker C
    ACS Nano; 2014 Jan; 8(1):35-43. PubMed ID: 24295288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphiphilic and Biocompatible DNA Origami-Based Emulsion Formation and Nanopore Release for Anti-Melanogenesis Therapy.
    Huang H; Belwal T; Li L; Xu Y; Zou L; Lin X; Luo Z
    Small; 2021 Nov; 17(45):e2104831. PubMed ID: 34608748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, assembly, and characterization of membrane-spanning DNA nanopores.
    Lanphere C; Offenbartl-Stiegert D; Dorey A; Pugh G; Georgiou E; Xing Y; Burns JR; Howorka S
    Nat Protoc; 2021 Jan; 16(1):86-130. PubMed ID: 33349702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanopore fingerprinting of supramolecular DNA nanostructures.
    Confederat S; Sandei I; Mohanan G; Wälti C; Actis P
    Biophys J; 2022 Dec; 121(24):4882-4891. PubMed ID: 35986518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compliant DNA Origami Nanoactuators as Size-Selective Nanopores.
    Yu Z; Baptist AV; Reinhardt SCM; Bertosin E; Dekker C; Jungmann R; Heuer-Jungemann A; Caneva S
    Adv Mater; 2024 Sep; 36(39):e2405104. PubMed ID: 39014922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA origami nanopores.
    Bell NA; Engst CR; Ablay M; Divitini G; Ducati C; Liedl T; Keyser UF
    Nano Lett; 2012 Jan; 12(1):512-7. PubMed ID: 22196850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translocation of tetrahedral DNA nanostructures through a solid-state nanopore.
    Zhao X; Ma R; Hu Y; Chen X; Dou R; Liu K; Cui C; Liu H; Li Q; Pan D; Shan X; Wang L; Fan C; Lu X
    Nanoscale; 2019 Mar; 11(13):6263-6269. PubMed ID: 30882811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Assembly of Membrane-Spanning DNA Nanopores.
    Göpfrich K; Ohmann A; Keyser UF
    Methods Mol Biol; 2021; 2186():33-48. PubMed ID: 32918728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and self-folding of amphiphilic DNA origami.
    Zhou C; Wang D; Dong Y; Xin L; Sun Y; Yang Z; Liu D
    Small; 2015 Mar; 11(9-10):1161-4. PubMed ID: 25087844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA Nanotechnology for Building Sensors, Nanopores and Ion-Channels.
    Göpfrich K; Keyser UF
    Adv Exp Med Biol; 2019; 1174():331-370. PubMed ID: 31713205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation-Mediated Translocation of DNA Origami Nanoplates through a Narrow Solid-State Nanopore.
    Zhu L; Zhang Z; Liu Q
    Anal Chem; 2020 Oct; 92(19):13238-13245. PubMed ID: 32872775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA origami gatekeepers for solid-state nanopores.
    Wei R; Martin TG; Rant U; Dietz H
    Angew Chem Int Ed Engl; 2012 May; 51(20):4864-7. PubMed ID: 22489067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA-cholesterol barges as programmable membrane-exploring agents.
    Johnson-Buck A; Jiang S; Yan H; Walter NG
    ACS Nano; 2014 Jun; 8(6):5641-9. PubMed ID: 24833515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion detection in a DNA nanopore FET device.
    Livernois W; Cao PS; Saha S; Ding Q; Gopinath A; Anantram MP
    Nanotechnology; 2024 May; 35(32):. PubMed ID: 38692268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Quantification of the Impact of Defects on the Mechanical Behavior of Deoxyribonucleic acid Origami Nanoplates.
    Liang B; Nagarajan A; Hudoba MW; Alvarez R; Castro CE; Soghrati S
    J Biomech Eng; 2017 Apr; 139(4):. PubMed ID: 28241201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Programmable DNA Origami Platform for Organizing Intrinsically Disordered Nucleoporins within Nanopore Confinement.
    Fisher PDE; Shen Q; Akpinar B; Davis LK; Chung KKH; Baddeley D; Šarić A; Melia TJ; Hoogenboom BW; Lin C; Lusk CP
    ACS Nano; 2018 Feb; 12(2):1508-1518. PubMed ID: 29350911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Block Copolymer Micellization as a Protection Strategy for DNA Origami.
    Agarwal NP; Matthies M; Gür FN; Osada K; Schmidt TL
    Angew Chem Int Ed Engl; 2017 May; 56(20):5460-5464. PubMed ID: 28295864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed Protein Adsorption Through DNA Origami Masks.
    Ramakrishnan S; Grundmeier G; Keller A
    Methods Mol Biol; 2018; 1811():253-262. PubMed ID: 29926458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.
    Yonamine Y; Cervantes-Salguero K; Minami K; Kawamata I; Nakanishi W; Hill JP; Murata S; Ariga K
    Phys Chem Chem Phys; 2016 May; 18(18):12576-81. PubMed ID: 27091668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.