BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

607 related articles for article (PubMed ID: 31411858)

  • 1. Enhanced Thermoelectric Performance of As-Grown Suspended Graphene Nanoribbons.
    Li QY; Feng T; Okita W; Komori Y; Suzuki H; Kato T; Kaneko T; Ikuta T; Ruan X; Takahashi K
    ACS Nano; 2019 Aug; 13(8):9182-9189. PubMed ID: 31411858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons.
    Deng S; Li L; Guy OJ; Zhang Y
    Phys Chem Chem Phys; 2019 Aug; 21(33):18161-18169. PubMed ID: 31389445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the thermoelectric performance of graphene nano-ribbons without degrading the electronic properties.
    Tran VT; Saint-Martin J; Dollfus P; Volz S
    Sci Rep; 2017 May; 7(1):2313. PubMed ID: 28539598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon transport and thermoelectric properties of semiconducting Bi
    Rashid Z; Nissimagoudar AS; Li W
    Phys Chem Chem Phys; 2019 Mar; 21(10):5679-5688. PubMed ID: 30799478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient mechanism for enhancing the thermoelectricity of nanoribbons by blocking phonon transport in 2D materials.
    Liu YY; Zeng YJ; Jia PZ; Cao XH; Jiang X; Chen KQ
    J Phys Condens Matter; 2018 Jul; 30(27):275701. PubMed ID: 29799436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High thermoelectric performance in graphene nanoribbons by graphene/BN interface engineering.
    Tran VT; Saint-Martin J; Dollfus P
    Nanotechnology; 2015 Dec; 26(49):495202. PubMed ID: 26574344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significantly Enhanced Thermoelectric Performance of Graphene through Atomic-Scale Defect Engineering via Mobile Hot-Wire Chemical Vapor Deposition Systems.
    Choi M; Novak TG; Byen J; Lee H; Baek J; Hong S; Kim K; Song J; Shin H; Jeon S
    ACS Appl Mater Interfaces; 2021 May; 13(20):24304-24313. PubMed ID: 33983698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of graphene nanofillers on the enhanced thermoelectric properties of Bi
    Kumar S; Singh S; Dhawan PK; Yadav RR; Khare N
    Nanotechnology; 2018 Apr; 29(13):135703. PubMed ID: 29355837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.
    Rhyee JS; Kim JH
    Materials (Basel); 2015 Mar; 8(3):1283-1324. PubMed ID: 28788002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. α-Ag
    Zhou WX; Wu D; Xie G; Chen KQ; Zhang G
    ACS Omega; 2020 Mar; 5(11):5796-5804. PubMed ID: 32226859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous increase in electrical conductivity and Seebeck coefficient in highly boron-doped nanocrystalline Si.
    Neophytou N; Zianni X; Kosina H; Frabboni S; Lorenzi B; Narducci D
    Nanotechnology; 2013 May; 24(20):205402. PubMed ID: 23598565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Giant thermoelectric effect in graphene-based topological insulators with heavy adatoms and nanopores.
    Chang PH; Bahramy MS; Nagaosa N; Nikolić BK
    Nano Lett; 2014 Jul; 14(7):3779-84. PubMed ID: 24932511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal and thermoelectric properties of graphene.
    Xu Y; Li Z; Duan W
    Small; 2014 Jun; 10(11):2182-99. PubMed ID: 24610791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene inclusion induced ultralow thermal conductivity and improved figure of merit in p-type SnSe.
    Chen L; Zhao W; Li M; Yang G; Nazrul Islam SMK; Mitchell DRG; Cheng Z; Wang X
    Nanoscale; 2020 Jun; 12(24):12760-12766. PubMed ID: 32537621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Sb Deviation from Its Stoichiometric Ratio on the Micro- and Electronic Structures and Thermoelectric Properties of Cu
    Huang L; Kong Y; Zhang J; Zhu C; Zhang J; Li Y; Li D; Xin H; Wang Z; Qin X
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14145-14153. PubMed ID: 32109043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-Principles Study of the Transport Properties of Graphene-Hexagonal Boron Nitride Superlattice.
    Wang XM; Lu SS
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3025-8. PubMed ID: 26353530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic-scale tuning of oxygen-doped Bi
    Li S; Chu M; Zhu W; Wang R; Wang Q; Liu F; Gu M; Xiao Y; Pan F
    Nanoscale; 2020 Jan; 12(3):1580-1588. PubMed ID: 31859305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.