These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Potassium-induced potentiation of subtetanic force in rat skeletal muscles: influences of β Olesen JH; Herskind J; Pedersen KK; Overgaard K Am J Physiol Cell Physiol; 2021 Nov; 321(5):C884-C896. PubMed ID: 34613841 [TBL] [Abstract][Full Text] [Related]
3. Contractile benefits of doublet-initiated low-frequency stimulation in rat extensor digitorum longus muscle exposed to high extracellular [K Pedersen KK; Nielsen OB; Overgaard K Am J Physiol Cell Physiol; 2019 Jul; 317(1):C39-C47. PubMed ID: 30969780 [TBL] [Abstract][Full Text] [Related]
4. Protective role of extracellular chloride in fatigue of isolated mammalian skeletal muscle. Cairns SP; Ruzhynsky V; Renaud JM Am J Physiol Cell Physiol; 2004 Sep; 287(3):C762-70. PubMed ID: 15151907 [TBL] [Abstract][Full Text] [Related]
5. Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue. Cairns SP; Leader JP; Loiselle DS; Higgins A; Lin W; Renaud JM J Appl Physiol (1985); 2015 Mar; 118(6):662-74. PubMed ID: 25571990 [TBL] [Abstract][Full Text] [Related]
6. Increased tetanic calcium in early fatigue of mammalian muscle fibers is accompanied by accelerated force development despite a decreased force. Leijding C; Viken I; Bruton JD; Andersson DC; Cheng AJ; Westerblad H FASEB J; 2023 Jun; 37(6):e22978. PubMed ID: 37191967 [TBL] [Abstract][Full Text] [Related]
7. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro. Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189 [TBL] [Abstract][Full Text] [Related]
8. Muscle performance following fatigue induced by isotonic and quasi-isometric contractions of rat extensor digitorum longus and soleus muscles in vitro. Vedsted P; Larsen AH; Madsen K; Sjøgaard G Acta Physiol Scand; 2003 Jun; 178(2):175-86. PubMed ID: 12780392 [TBL] [Abstract][Full Text] [Related]
9. Effect of xanthine oxidase-generated extracellular superoxide on skeletal muscle force generation. Gomez-Cabrera MC; Close GL; Kayani A; McArdle A; Viña J; Jackson MJ Am J Physiol Regul Integr Comp Physiol; 2010 Jan; 298(1):R2-8. PubMed ID: 19828843 [TBL] [Abstract][Full Text] [Related]
10. In isolated skeletal muscle, excitation may increase extracellular K+ 10-fold; how can contractility be maintained? Clausen T Exp Physiol; 2011 Mar; 96(3):356-68. PubMed ID: 21123362 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions. Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178 [TBL] [Abstract][Full Text] [Related]
12. Force potentiation during eccentric contractions in rat skeletal muscle. Andersen OE; Kristensen AM; Nielsen OB; Overgaard K J Appl Physiol (1985); 2023 Mar; 134(3):777-785. PubMed ID: 36759160 [TBL] [Abstract][Full Text] [Related]
13. Effects of extracellular HCO3(-) on fatigue, pHi, and K+ efflux in rat skeletal muscles. Broch-Lips M; Overgaard K; Praetorius HA; Nielsen OB J Appl Physiol (1985); 2007 Aug; 103(2):494-503. PubMed ID: 17446415 [TBL] [Abstract][Full Text] [Related]
14. Fatiguing stimulation increases curvature of the force-velocity relationship in isolated fast-twitch and slow-twitch rat muscles. Kristensen AM; Nielsen OB; Pedersen TH; Overgaard K J Exp Biol; 2019 Aug; 222(Pt 15):. PubMed ID: 31292165 [TBL] [Abstract][Full Text] [Related]
15. The potassium-glycogen interaction on force and excitability in mouse skeletal muscle: implications for fatigue. Cairns SP; Renaud JM J Physiol; 2023 Dec; 601(24):5669-5687. PubMed ID: 37934587 [TBL] [Abstract][Full Text] [Related]
16. Potentiation of force by extracellular potassium and posttetanic potentiation are additive in mouse fast-twitch muscle in vitro. Overgaard K; Gittings W; Vandenboom R Pflugers Arch; 2022 Jun; 474(6):637-646. PubMed ID: 35266019 [TBL] [Abstract][Full Text] [Related]
17. Role of Ca Glass LD; Cheng AJ; MacIntosh BR Pflugers Arch; 2018 Aug; 470(8):1243-1254. PubMed ID: 29671103 [TBL] [Abstract][Full Text] [Related]
18. Role of parvalbumin in fatigue-induced changes in force and cytosolic calcium transients in intact single mouse myofibers. Nogueira L; Gilmore NK; Hogan MC J Appl Physiol (1985); 2022 Apr; 132(4):1041-1053. PubMed ID: 35238653 [TBL] [Abstract][Full Text] [Related]
19. The peak force-resting membrane potential relationships of mouse fast- and slow-twitch muscle. Cairns SP; Leader JP; Higgins A; Renaud JM Am J Physiol Cell Physiol; 2022 Jun; 322(6):C1151-C1165. PubMed ID: 35385328 [TBL] [Abstract][Full Text] [Related]
20. Effects of lactic acid and catecholamines on contractility in fast-twitch muscles exposed to hyperkalemia. Hansen AK; Clausen T; Nielsen OB Am J Physiol Cell Physiol; 2005 Jul; 289(1):C104-12. PubMed ID: 15743886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]