BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 31412094)

  • 1. Petrosal morphology and cochlear function in Mesozoic stem therians.
    Harper T; Rougier GW
    PLoS One; 2019; 14(8):e0209457. PubMed ID: 31412094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Petrosal anatomy and inner ear structures of the Late Jurassic Henkelotherium (Mammalia, Cladotheria, Dryolestoidea): insight into the early evolution of the ear region in cladotherian mammals.
    Ruf I; Luo ZX; Wible JR; Martin T
    J Anat; 2009 May; 214(5):679-93. PubMed ID: 19438763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inner ear labyrinth anatomy of monotremes and implications for mammalian inner ear evolution.
    Schultz JA; Zeller U; Luo ZX
    J Morphol; 2017 Feb; 278(2):236-263. PubMed ID: 27889918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fossil evidence on evolution of inner ear cochlea in Jurassic mammals.
    Luo ZX; Ruf I; Schultz JA; Martin T
    Proc Biol Sci; 2011 Jan; 278(1702):28-34. PubMed ID: 20667879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cochlear labyrinth volume and hearing abilities in primates.
    Kirk EC; Gosselin-Ildari AD
    Anat Rec (Hoboken); 2009 Jun; 292(6):765-76. PubMed ID: 19462443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prenatal growth stages show the development of the ruminant bony labyrinth and petrosal bone.
    Costeur L; Mennecart B; Müller B; Schulz G
    J Anat; 2017 Feb; 230(2):347-353. PubMed ID: 27726136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of notoungulate (Placentalia, Mammalia) bony labyrinths and new phylogenetically informative inner ear characters.
    Macrini TE; Flynn JJ; Ni X; Croft DA; Wyss AR
    J Anat; 2013 Nov; 223(5):442-61. PubMed ID: 24102069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Form and function of the mammalian inner ear.
    Ekdale EG
    J Anat; 2016 Feb; 228(2):324-37. PubMed ID: 25911945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Petrosal anatomy in the fossil mammal Necrolestes: evidence for metatherian affinities and comparisons with the extant marsupial mole.
    Ladevèze S; Asher RJ; Sánchez-Villagra MR
    J Anat; 2008 Dec; 213(6):686-97. PubMed ID: 19094184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary paths to mammalian cochleae.
    Manley GA
    J Assoc Res Otolaryngol; 2012 Dec; 13(6):733-43. PubMed ID: 22983571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limits on normal cochlear 'third' windows provided by previous investigations of additional sound paths into and out of the cat inner ear.
    Rosowski JJ; Bowers P; Nakajima HH
    Hear Res; 2018 Mar; 360():3-13. PubMed ID: 29169906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Petrosal and bony labyrinth morphology of the stem paenungulate mammal (Paenungulatomorpha) Ocepeia daouiensis from the Paleocene of Morocco.
    Gheerbrant E; Schmitt A; Billet G
    J Anat; 2022 Apr; 240(4):595-611. PubMed ID: 32735727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomical evidence for low frequency sensitivity in an archaeocete whale: comparison of the inner ear of Zygorhiza kochii with that of crown Mysticeti.
    Ekdale EG; Racicot RA
    J Anat; 2015 Jan; 226(1):22-39. PubMed ID: 25400023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual endocranial and inner ear endocasts of the Paleocene 'condylarth' Chriacus: new insight into the neurosensory system and evolution of early placental mammals.
    Bertrand OC; Shelley SL; Wible JR; Williamson TE; Holbrook LT; Chester SGB; Butler IB; Brusatte SL
    J Anat; 2020 Jan; 236(1):21-49. PubMed ID: 31667836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cochlear shape reveals that the human organ of hearing is sex-typed from birth.
    Braga J; Samir C; Risser L; Dumoncel J; Descouens D; Thackeray JF; Balaresque P; Oettlé A; Loubes JM; Fradi A
    Sci Rep; 2019 Jul; 9(1):10889. PubMed ID: 31350421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new symmetrodont mammal from China and its implications for mammalian evolution.
    Hu Y; Wang Y; Luo Z; Li C
    Nature; 1997 Nov; 390(6656):137-42. PubMed ID: 9367151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Description of a cranial endocast from the fossil mammal Vincelestes neuquenianus (Theriiformes) and its relevance to the evolution of endocranial characters in therians.
    Macrini TE; Rougier GW; Rowe T
    Anat Rec (Hoboken); 2007 Jul; 290(7):875-92. PubMed ID: 17506058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cochlear labyrinth volume in Krapina Neandertals.
    Beals ME; Frayer DW; Radovčić J; Hill CA
    J Hum Evol; 2016 Jan; 90():176-82. PubMed ID: 26603101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the ear region anatomy and cranial blood supply of advanced stem Strepsirhini: evidence from three primate petrosals from the Eocene of Chambi, Tunisia.
    Benoit J; Essid el M; Marzougui W; Khayati Ammar H; Lebrun R; Tabuce R; Marivaux L
    J Hum Evol; 2013 Nov; 65(5):551-72. PubMed ID: 23938180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Anatomy of the Bony Labyrinth (Inner Ear) of Placental Mammals.
    Ekdale EG
    PLoS One; 2013; 8(6):e66624. PubMed ID: 23805251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.