These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31412094)

  • 61. Mammaliaform extinctions as a driver of the morphological radiation of Cenozoic mammals.
    Brocklehurst N; Panciroli E; Benevento GL; Benson RBJ
    Curr Biol; 2021 Jul; 31(13):2955-2963.e4. PubMed ID: 34004143
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals.
    West CD
    J Acoust Soc Am; 1985 Mar; 77(3):1091-101. PubMed ID: 3980863
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The inner ear of the Paranthropus specimen DNH 22 from Drimolen, South Africa.
    Beaudet A
    Am J Phys Anthropol; 2019 Nov; 170(3):439-446. PubMed ID: 31290572
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Human Cochlear Aqueduct and Accessory Canals: a Micro-CT Analysis Using a 3D Reconstruction Paradigm.
    Atturo F; Schart-Morén N; Larsson S; Rask-Andersen H; Li H
    Otol Neurotol; 2018 Jul; 39(6):e429-e435. PubMed ID: 29794687
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Infrasonic and Ultrasonic Hearing Evolved after the Emergence of Modern Whales.
    Mourlam MJ; Orliac MJ
    Curr Biol; 2017 Jun; 27(12):1776-1781.e9. PubMed ID: 28602653
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cochlear third window in the scala vestibuli: an animal model.
    Preis M; Attias J; Hadar T; Nageris BI
    Otol Neurotol; 2009 Aug; 30(5):657-60. PubMed ID: 19574945
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cochlear line: a novel landmark for hearing preservation using the anterior petrosal approach.
    Kim SM; Lee HY; Kim HK; Zabramski JM
    J Neurosurg; 2015 Jul; 123(1):9-13. PubMed ID: 25658778
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A comparative study on auditory and hyoid bones of Jurassic euharamiyidans and contrasting evidence for mammalian middle ear evolution.
    Meng J; Mao F; Han G; Zheng XT; Wang XL; Wang Y
    J Anat; 2020 Jan; 236(1):50-71. PubMed ID: 31498899
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mosaic evolution of the mammalian auditory periphery.
    Manley GA
    Adv Exp Med Biol; 2013; 787():3-9. PubMed ID: 23716203
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones.
    Han G; Mao F; Bi S; Wang Y; Meng J
    Nature; 2017 Nov; 551(7681):451-456. PubMed ID: 29132143
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The Brain and Inner Ear of the Early Paleocene "Condylarth" Carsioptychus coarctatus: Implications for Early Placental Mammal Neurosensory Biology and Behavior.
    Cameron J; Shelley SL; Williamson TE; Brusatte SL
    Anat Rec (Hoboken); 2019 Feb; 302(2):306-324. PubMed ID: 30290063
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Infrasonic hearing in birds: a review of audiometry and hypothesized structure-function relationships.
    Zeyl JN; den Ouden O; Köppl C; Assink J; Christensen-Dalsgaard J; Patrick SC; Clusella-Trullas S
    Biol Rev Camb Philos Soc; 2020 Aug; 95(4):1036-1054. PubMed ID: 32237036
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The comparative anatomy of the petrosal bone and bony labyrinth of four small-sized deer.
    Zhang B; Tong H
    Anat Rec (Hoboken); 2024 Mar; 307(3):566-580. PubMed ID: 37610098
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Aequidensitometrie of the labyrinthic capsule with special regard of the bottom of the internal auditory meatus].
    Krmpotić-Nemanić J; Nemanić G; Simunić V; Miklić P; Pavesić Z; Ivanković D
    Laryngol Rhinol Otol (Stuttg); 1976 Aug; 55(8):683-6. PubMed ID: 134236
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A monotreme-like auditory apparatus in a Middle Jurassic haramiyidan.
    Wang J; Wible JR; Guo B; Shelley SL; Hu H; Bi S
    Nature; 2021 Feb; 590(7845):279-283. PubMed ID: 33505017
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The bony labyrinth of the early platyrrhine primate Chilecebus.
    Ni X; Flynn JJ; Wyss AR
    J Hum Evol; 2010 Dec; 59(6):595-607. PubMed ID: 20952046
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Useful imaging of the ear].
    Ala Eddine C; Williams M; Ayache D
    J Radiol; 2006 Nov; 87(11 Pt 2):1728-42. PubMed ID: 17124476
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The evolution of bat vestibular systems in the face of potential antagonistic selection pressures for flight and echolocation.
    Davies KT; Bates PJ; Maryanto I; Cotton JA; Rossiter SJ
    PLoS One; 2013; 8(4):e61998. PubMed ID: 23637943
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Inner ear anatomy is a proxy for deducing auditory capability and behaviour in reptiles and birds.
    Walsh SA; Barrett PM; Milner AC; Manley G; Witmer LM
    Proc Biol Sci; 2009 Apr; 276(1660):1355-60. PubMed ID: 19141427
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Evidence for a Mid-Jurassic Adaptive Radiation in Mammals.
    Close RA; Friedman M; Lloyd GT; Benson RB
    Curr Biol; 2015 Aug; 25(16):2137-42. PubMed ID: 26190074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.