These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31412490)

  • 1. Water-energy-food nexus of bioethanol in Pakistan: A life cycle approach evaluating footprint indicators and energy performance.
    Ghani HU; Silalertruksa T; Gheewala SH
    Sci Total Environ; 2019 Oct; 687():867-876. PubMed ID: 31412490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental and resource burdens associated with world biofuel production out to 2050: footprint components from carbon emissions and land use to waste arisings and water consumption.
    Hammond GP; Li B
    Glob Change Biol Bioenergy; 2016 Sep; 8(5):894-908. PubMed ID: 27610203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water, Energy, and Carbon Footprints of Bioethanol from the U.S. and Brazil.
    Mekonnen MM; Romanelli TL; Ray C; Hoekstra AY; Liska AJ; Neale CMU
    Environ Sci Technol; 2018 Dec; 52(24):14508-14518. PubMed ID: 30428259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The environmental cost of subsistence: Optimizing diets to minimize footprints.
    Gephart JA; Davis KF; Emery KA; Leach AM; Galloway JN; Pace ML
    Sci Total Environ; 2016 May; 553():120-127. PubMed ID: 26906699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon footprint as an environmental sustainability indicator for the particleboard produced in Pakistan.
    Hussain M; Naseem Malik R; Taylor A
    Environ Res; 2017 May; 155():385-393. PubMed ID: 28288441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of the biofuels policy mandate in Thailand on water: the case of bioethanol.
    Gheewala SH; Silalertruksa T; Nilsalab P; Mungkung R; Perret SR; Chaiyawannakarn N
    Bioresour Technol; 2013 Dec; 150():457-65. PubMed ID: 23910530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle assessment of first-generation biofuels using a nitrogen crop model.
    Gallejones P; Pardo G; Aizpurua A; del Prado A
    Sci Total Environ; 2015 Feb; 505():1191-201. PubMed ID: 25461117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Land-use and alternative bioenergy pathways for waste biomass.
    Campbell JE; Block E
    Environ Sci Technol; 2010 Nov; 44(22):8665-9. PubMed ID: 20883033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Untangling the water-food-energy-environment nexus for global change adaptation in a complex Himalayan water resource system.
    Momblanch A; Papadimitriou L; Jain SK; Kulkarni A; Ojha CSP; Adeloye AJ; Holman IP
    Sci Total Environ; 2019 Mar; 655():35-47. PubMed ID: 30469067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic analysis of Water-Energy-Food security nexus: A South Asian case study.
    Putra MPIF; Pradhan P; Kropp JP
    Sci Total Environ; 2020 Aug; 728():138451. PubMed ID: 32570309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and modeling of sustainable bioethanol supply chain by minimizing the total ecological footprint in life cycle perspective.
    Ren J; Manzardo A; Toniolo S; Scipioni A; Tan S; Dong L; Gao S
    Bioresour Technol; 2013 Oct; 146():771-774. PubMed ID: 23978606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Balancing the benefits from the water-energy-land-food nexus through agroforestry in the Sahel.
    Elagib NA; Al-Saidi M
    Sci Total Environ; 2020 Nov; 742():140509. PubMed ID: 33167296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The water-land-food nexus of first-generation biofuels.
    Rulli MC; Bellomi D; Cazzoli A; De Carolis G; D'Odorico P
    Sci Rep; 2016 Mar; 6():22521. PubMed ID: 26936679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Economic growth, natural resources, and ecological footprints: evidence from Pakistan.
    Hassan ST; Xia E; Khan NH; Shah SMA
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2929-2938. PubMed ID: 30499092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning from integrated management approaches to implement the Nexus.
    Roidt M; Avellán T
    J Environ Manage; 2019 May; 237():609-616. PubMed ID: 30831430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing GHG emissions, ecological footprint, and water linkage for different fuels.
    Chavez-Rodriguez MF; Nebra SA
    Environ Sci Technol; 2010 Dec; 44(24):9252-7. PubMed ID: 21105738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Life Cycle Assessment (LCA) comparison of three management options for waste papers: bioethanol production, recycling and incineration with energy recovery.
    Wang L; Templer R; Murphy RJ
    Bioresour Technol; 2012 Sep; 120():89-98. PubMed ID: 22784958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energising the WEF nexus to enhance sustainable development at local level.
    Terrapon-Pfaff J; Ortiz W; Dienst C; Gröne MC
    J Environ Manage; 2018 Oct; 223():409-416. PubMed ID: 29945102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle environmental impacts of bioethanol production from sugarcane molasses in Iran.
    Farahani SS; Asoodar MA
    Environ Sci Pollut Res Int; 2017 Oct; 24(28):22547-22556. PubMed ID: 28804804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional water footprint evaluation in China: a case of Liaoning.
    Dong H; Geng Y; Sarkis J; Fujita T; Okadera T; Xue B
    Sci Total Environ; 2013 Jan; 442():215-24. PubMed ID: 23178781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.