These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 31412529)

  • 41. Application of ToxCast/Tox21 data for toxicity mechanism-based evaluation and prioritization of environmental chemicals: Perspective and limitations.
    Jeong J; Kim D; Choi J
    Toxicol In Vitro; 2022 Oct; 84():105451. PubMed ID: 35921976
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combining short-term bioassays using fish and crustacean model organisms with ToxCast in vitro data and broad-spectrum chemical analysis for environmental risk assessment of the river water (Sava, Croatia).
    Malev O; Babić S; Sima Cota A; Stipaničev D; Repec S; Drnić M; Lovrić M; Bojanić K; Radić Brkanac S; Čož-Rakovac R; Klobučar G
    Environ Pollut; 2022 Jan; 292(Pt B):118440. PubMed ID: 34740738
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD): Occurrence, distribution, ecological risk.
    Peng Y; Fang W; Krauss M; Brack W; Wang Z; Li F; Zhang X
    Environ Pollut; 2018 Oct; 241():484-493. PubMed ID: 29879689
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS.
    Sjerps RMA; Vughs D; van Leerdam JA; Ter Laak TL; van Wezel AP
    Water Res; 2016 Apr; 93():254-264. PubMed ID: 26921851
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Using ToxCast to Explore Chemical Activities and Hazard Traits: A Case Study With Ortho-Phthalates.
    Pham N; Iyer S; Hackett E; Lock BH; Sandy M; Zeise L; Solomon G; Marty M
    Toxicol Sci; 2016 Jun; 151(2):286-301. PubMed ID: 26969370
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of toxicity pathway of diesel particulate matter using AOP of PPARγ inactivation leading to pulmonary fibrosis.
    Jeong J; Bae SY; Choi J
    Environ Int; 2021 Feb; 147():106339. PubMed ID: 33422967
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pathway-Based Approaches for Assessing Biological Hazards of Complex Mixtures of Contaminants: A Case Study in the Maumee River.
    Ankley GT; Berninger JP; Blackwell BR; Cavallin JE; Collette TW; Ekman DR; Fay KA; Feifarek DJ; Jensen KM; Kahl MD; Mosley JD; Poole ST; Randolph EC; Rearick D; Schroeder AL; Swintek J; Villeneuve DL
    Environ Toxicol Chem; 2021 Apr; 40(4):1098-1122. PubMed ID: 33270248
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Data-driven derivation of an adverse outcome pathway linking vascular endothelial growth factor receptor (VEGFR), endocrine disruption, and atherosclerosis.
    Ehrlich D; Krishna S; Kleinstreuer N
    ALTEX; 2024; 41(4):617-632. PubMed ID: 38979646
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of Adverse Outcome Pathway for PPARγ Antagonism Leading to Pulmonary Fibrosis and Chemical Selection for Its Validation: ToxCast Database and a Deep Learning Artificial Neural Network Model-Based Approach.
    Jeong J; Garcia-Reyero N; Burgoon L; Perkins E; Park T; Kim C; Roh JY; Choi J
    Chem Res Toxicol; 2019 Jun; 32(6):1212-1222. PubMed ID: 31074622
    [TBL] [Abstract][Full Text] [Related]  

  • 50. AOP-DB: A database resource for the exploration of Adverse Outcome Pathways through integrated association networks.
    Pittman ME; Edwards SW; Ives C; Mortensen HM
    Toxicol Appl Pharmacol; 2018 Mar; 343():71-83. PubMed ID: 29454060
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using In Vitro High-Throughput Screening Data for Predicting Benzo[k]Fluoranthene Human Health Hazards.
    Burgoon LD; Druwe IL; Painter K; Yost EE
    Risk Anal; 2017 Feb; 37(2):280-290. PubMed ID: 27088631
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The screening and prioritization of contaminants of emerging concern in the marine environment based on multiple biological response measures.
    James CA; Sofield R; Faber M; Wark D; Simmons A; Harding L; O'Neill S
    Sci Total Environ; 2023 Aug; 886():163712. PubMed ID: 37156386
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Zebrafish-based reporter gene assays reveal different estrogenic activities in river waters compared to a conventional human-derived assay.
    Sonavane M; Creusot N; Maillot-Maréchal E; Péry A; Brion F; Aїt-Aïssa S
    Sci Total Environ; 2016 Apr; 550():934-939. PubMed ID: 26851879
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-throughput screening tools facilitate calculation of a combined exposure-bioactivity index for chemicals with endocrine activity.
    Wegner SH; Pinto CL; Ring CL; Wambaugh JF
    Environ Int; 2020 Apr; 137():105470. PubMed ID: 32050122
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predictive value of the ToxCast/Tox21 high throughput toxicity screening data for approximating in vivo ecotoxicity endpoints and ecotoxicological risk in eco- surveillance applications.
    Rodea-Palomares I; Bone AJ
    Sci Total Environ; 2024 Mar; 914():169783. PubMed ID: 38184261
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Targeting aquatic microcontaminants for monitoring: exposure categorization and application to the Swiss situation.
    Götz CW; Stamm C; Fenner K; Singer H; Schärer M; Hollender J
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):341-54. PubMed ID: 19475441
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Toxicological risk assessment and prioritization of drinking water relevant contaminants of emerging concern.
    Baken KA; Sjerps RMA; Schriks M; van Wezel AP
    Environ Int; 2018 Sep; 118():293-303. PubMed ID: 29909348
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Environmental surveillance and monitoring--The next frontiers for high-throughput toxicology.
    Schroeder AL; Ankley GT; Houck KA; Villeneuve DL
    Environ Toxicol Chem; 2016 Mar; 35(3):513-25. PubMed ID: 26923854
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Changes in toxicity and Ah receptor agonist activity of suspended particulate matter during flood events at the rivers Neckar and Rhine - a mass balance approach using in vitro methods and chemical analysis.
    Wölz J; Engwall M; Maletz S; Olsman Takner H; van Bavel B; Kammann U; Klempt M; Weber R; Braunbeck T; Hollert H
    Environ Sci Pollut Res Int; 2008 Oct; 15(7):536-53. PubMed ID: 18936997
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Micropollutants in European rivers: A mode of action survey to support the development of effect-based tools for water monitoring.
    Busch W; Schmidt S; Kühne R; Schulze T; Krauss M; Altenburger R
    Environ Toxicol Chem; 2016 Aug; 35(8):1887-99. PubMed ID: 27299692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.