BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31412909)

  • 1. scAlign: a tool for alignment, integration, and rare cell identification from scRNA-seq data.
    Johansen N; Quon G
    Genome Biol; 2019 Aug; 20(1):166. PubMed ID: 31412909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. STACAS: Sub-Type Anchor Correction for Alignment in Seurat to integrate single-cell RNA-seq data.
    Andreatta M; Carmona SJ
    Bioinformatics; 2021 May; 37(6):882-884. PubMed ID: 32845323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters.
    Domanskyi S; Szedlak A; Hawkins NT; Wang J; Paternostro G; Piermarocchi C
    BMC Bioinformatics; 2019 Jul; 20(1):369. PubMed ID: 31262249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LAmbDA: label ambiguous domain adaptation dataset integration reduces batch effects and improves subtype detection.
    Johnson TS; Wang T; Huang Z; Yu CY; Wu Y; Han Y; Zhang Y; Huang K; Zhang J
    Bioinformatics; 2019 Nov; 35(22):4696-4706. PubMed ID: 31038689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using neural networks for reducing the dimensions of single-cell RNA-Seq data.
    Lin C; Jain S; Kim H; Bar-Joseph Z
    Nucleic Acids Res; 2017 Sep; 45(17):e156. PubMed ID: 28973464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-supervised integration of single-cell transcriptomics data.
    Andreatta M; Hérault L; Gueguen P; Gfeller D; Berenstein AJ; Carmona SJ
    Nat Commun; 2024 Jan; 15(1):872. PubMed ID: 38287014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis.
    Wu H; Kirita Y; Donnelly EL; Humphreys BD
    J Am Soc Nephrol; 2019 Jan; 30(1):23-32. PubMed ID: 30510133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis.
    Li X; Wang K; Lyu Y; Pan H; Zhang J; Stambolian D; Susztak K; Reilly MP; Hu G; Li M
    Nat Commun; 2020 May; 11(1):2338. PubMed ID: 32393754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CLAIRE: contrastive learning-based batch correction framework for better balance between batch mixing and preservation of cellular heterogeneity.
    Yan X; Zheng R; Wu F; Li M
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36821425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain adaptation for supervised integration of scRNA-seq data.
    Sun Y; Qiu P
    Commun Biol; 2023 Mar; 6(1):274. PubMed ID: 36928806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Latent transcriptional variations of individual Plasmodium falciparum uncovered by single-cell RNA-seq and fluorescence imaging.
    Walzer KA; Fradin H; Emerson LY; Corcoran DL; Chi JT
    PLoS Genet; 2019 Dec; 15(12):e1008506. PubMed ID: 31856180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. JingleBells: A Repository of Immune-Related Single-Cell RNA-Sequencing Datasets.
    Ner-Gaon H; Melchior A; Golan N; Ben-Haim Y; Shay T
    J Immunol; 2017 May; 198(9):3375-3379. PubMed ID: 28416714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries.
    Riemondy KA; Ransom M; Alderman C; Gillen AE; Fu R; Finlay-Schultz J; Kirkpatrick GD; Di Paola J; Kabos P; Sartorius CA; Hesselberth JR
    Nucleic Acids Res; 2019 Feb; 47(4):e20. PubMed ID: 30496484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.