These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 3141385)
1. Pathway and sites for energy conservation in the metabolism of glucose by Selenomonas ruminantium. Melville SB; Michel TA; Macy JM J Bacteriol; 1988 Nov; 170(11):5298-304. PubMed ID: 3141385 [TBL] [Abstract][Full Text] [Related]
2. Regulation of carbon and electron flow in Propionispira arboris: relationship of catabolic enzyme levels to carbon substrates fermented during propionate formation via the methylmalonyl coenzyme A pathway. Thompson TE; Zeikus JG J Bacteriol; 1988 Sep; 170(9):3996-4000. PubMed ID: 3410821 [TBL] [Abstract][Full Text] [Related]
3. The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes. Miller TL Arch Microbiol; 1978 May; 117(2):145-52. PubMed ID: 678020 [TBL] [Abstract][Full Text] [Related]
4. Regulation of carbon flow in Selenomonas ruminantium grown in glucose-limited continuous culture. Melville SB; Michel TA; Macy JM J Bacteriol; 1988 Nov; 170(11):5305-11. PubMed ID: 3182729 [TBL] [Abstract][Full Text] [Related]
5. Relationship of lactate dehydrogenase specificity and growth rate to lactate metabolism by Selenomonas ruminantium. Appl Microbiol; 1975 Dec; 30(6):916-21. PubMed ID: 174490 [TBL] [Abstract][Full Text] [Related]
6. Pathway of succinate and propionate formation in Bacteroides fragilis. Macy JM; Ljungdahl LG; Gottschalk G J Bacteriol; 1978 Apr; 134(1):84-91. PubMed ID: 148460 [TBL] [Abstract][Full Text] [Related]
7. Formation of formate and hydrogen, and flux of reducing equivalents and carbon in Ruminococcus flavefaciens FD-1. Shi Y; Weimer PJ; Ralph J Antonie Van Leeuwenhoek; 1997 Aug; 72(2):101-9. PubMed ID: 9298188 [TBL] [Abstract][Full Text] [Related]
8. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Matsuoka Y; Shimizu K J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830 [TBL] [Abstract][Full Text] [Related]
9. Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium. Chen M; Wolin MJ Appl Environ Microbiol; 1977 Dec; 34(6):756-9. PubMed ID: 596874 [TBL] [Abstract][Full Text] [Related]
10. Energy conservation by succinate decarboxylation in Veillonella parvula. Denger K; Schink B J Gen Microbiol; 1992 May; 138(5):967-71. PubMed ID: 1645132 [TBL] [Abstract][Full Text] [Related]
11. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Postma E; Verduyn C; Scheffers WA; Van Dijken JP Appl Environ Microbiol; 1989 Feb; 55(2):468-77. PubMed ID: 2566299 [TBL] [Abstract][Full Text] [Related]
12. Molecular characterization, enzyme properties and transcriptional regulation of phosphoenolpyruvate carboxykinase and pyruvate kinase in a ruminal bacterium, Selenomonas ruminantium. Asanuma N; Hino T Microbiology (Reading); 2001 Mar; 147(Pt 3):681-690. PubMed ID: 11238975 [TBL] [Abstract][Full Text] [Related]
13. Sugar utilization in the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324: starch degradation to acetate and CO2 via a modified Embden-Meyerhof pathway and acetyl-CoA synthetase (ADP-forming). Labes A; Schönheit P Arch Microbiol; 2001 Nov; 176(5):329-38. PubMed ID: 11702074 [TBL] [Abstract][Full Text] [Related]
14. Dilution rates influence ammonia-assimilating enzyme activities and cell parameters of Selenomonas ruminantium strain D in continuous (glucose-limited) culture. Patterson JA; Chalova VI; Hespell RB; Ricke SC J Appl Microbiol; 2010 Jan; 108(1):357-65. PubMed ID: 19702858 [TBL] [Abstract][Full Text] [Related]
15. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Scheifinger CC; Wolin MJ Appl Microbiol; 1973 Nov; 26(5):789-95. PubMed ID: 4796955 [TBL] [Abstract][Full Text] [Related]
16. An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. Reeves RE; Warren LG; Susskind B; Lo HS J Biol Chem; 1977 Jan; 252(2):726-31. PubMed ID: 13076 [TBL] [Abstract][Full Text] [Related]
17. Factors affecting lactate and malate utilization by Selenomonas ruminantium. Evans JD; Martin SA Appl Environ Microbiol; 1997 Dec; 63(12):4853-8. PubMed ID: 9471965 [TBL] [Abstract][Full Text] [Related]
18. Control of lactate production by Selenomonas ruminantium: homotropic activation of lactate dehydrogenase by pyruvate. Wallace RJ J Gen Microbiol; 1978 Jul; 107(1):45-52. PubMed ID: 103995 [TBL] [Abstract][Full Text] [Related]
19. Growth and fermentation responses of Selenomonas ruminantium to limiting and non-limiting concentrations of ammonium chloride. Ricke SC; Schaefer DM Appl Microbiol Biotechnol; 1996 Sep; 46(2):169-75. PubMed ID: 8987647 [TBL] [Abstract][Full Text] [Related]
20. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Van der Werf MJ; Guettler MV; Jain MK; Zeikus JG Arch Microbiol; 1997 Jun; 167(6):332-42. PubMed ID: 9148774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]