These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31414083)

  • 1. Molten alkali halides - temperature dependence of structure, dynamics and thermodynamics.
    Walz MM; van der Spoel D
    Phys Chem Chem Phys; 2019 Aug; 21(34):18516-18524. PubMed ID: 31414083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal conductivity of molten alkali halides: Temperature and density dependence.
    Ohtori N; Oono T; Takase K
    J Chem Phys; 2009 Jan; 130(4):044505. PubMed ID: 19191396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of the local structures and transport coefficients of molten alkali chlorides.
    Wang J; Sun Z; Lu G; Yu J
    J Phys Chem B; 2014 Aug; 118(34):10196-206. PubMed ID: 25105467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.
    Chen F; Forsyth M
    Phys Chem Chem Phys; 2016 Jul; 18(28):19336-44. PubMed ID: 27375042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The origin of the conductivity maximum in molten salts. II. SnCl2 and HgBr2.
    Aravindakshan NP; Kuntz CM; Gemmell KE; Johnson KE; East AL
    J Chem Phys; 2016 Sep; 145(9):094504. PubMed ID: 27609001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectra of ionic liquids: a simulation study of LaCl3 and its mixtures with alkali chlorides.
    Glover WJ; Madden PA
    J Chem Phys; 2004 Oct; 121(15):7293-303. PubMed ID: 15473798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and dynamics in yttrium-based molten rare earth alkali fluorides.
    Levesque M; Sarou-Kanian V; Salanne M; Gobet M; Groult H; Bessada C; Madden PA; Rollet AL
    J Chem Phys; 2013 May; 138(18):184503. PubMed ID: 23676052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations.
    Galamba N; Nieto de Castro CA; Ely JF
    J Chem Phys; 2004 May; 120(18):8676-82. PubMed ID: 15267797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-Transferable Force Field for Alkali Halides.
    Walz MM; Ghahremanpour MM; van Maaren PJ; van der Spoel D
    J Chem Theory Comput; 2018 Nov; 14(11):5933-5948. PubMed ID: 30300552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of the molten alkali-chloride salts from an X-ray, simulation, and rate theory perspective.
    Roy S; Wu F; Wang H; Ivanov AS; Sharma S; Halstenberg P; Gill SK; Milinda Abeykoon AM; Kwon G; Topsakal M; Layne B; Sasaki K; Zhang Y; Mahurin SM; Dai S; Margulis CJ; Maginn EJ; Bryantsev VS
    Phys Chem Chem Phys; 2020 Oct; 22(40):22900-22917. PubMed ID: 32845262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray absorption study of molten yttrium trihalides.
    Okamoto Y; Akabori M; Motohashi H; Shiwaku H; Ogawa T
    J Synchrotron Radiat; 2001 Nov; 8(Pt 6):1191-9. PubMed ID: 11679771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvation Structure and Dynamics of Alkali Metal Halides in an Ionic Liquid from Classical Molecular Dynamics Simulations.
    Gupta R; Kartha TR; Mallik BS
    ACS Omega; 2019 Nov; 4(22):19556-19564. PubMed ID: 31788585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics determination of liquid-vapor coexistence in molten alkali halides.
    Abramo MC; Costa D; Malescio G; MunaĆ² G; Pellicane G; Prestipino S; Caccamo C
    Phys Rev E; 2018 Jul; 98(1-1):010103. PubMed ID: 30110854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomistic simulations of molten carbonates: Thermodynamic and transport properties of the Li
    Desmaele E; Sator N; Vuilleumier R; Guillot B
    J Chem Phys; 2019 Mar; 150(9):094504. PubMed ID: 30849908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The MgCO
    Desmaele E; Sator N; Vuilleumier R; Guillot B
    J Chem Phys; 2019 Jun; 150(21):214503. PubMed ID: 31176344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of halide ion-water hydrogen bonds in aqueous solutions: dependence on ion size and temperature.
    Chowdhuri S; Chandra A
    J Phys Chem B; 2006 May; 110(19):9674-80. PubMed ID: 16686518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational verification of two universal relations for simple ionic liquids. Kinetic properties of a model 2:1 molten salt.
    Armstrong JA; Ballone P
    J Phys Chem B; 2011 May; 115(17):4927-38. PubMed ID: 21476561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The origin of the conductivity maximum in molten salts. III. Zinc halides.
    Aravindakshan NP; Johnson KE; East ALL
    J Chem Phys; 2019 Jul; 151(3):034507. PubMed ID: 31325937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relating composition, structural order, entropy and transport in multi-component molten salts.
    Jabes BS; Chakravarty C
    J Chem Phys; 2012 Apr; 136(14):144507. PubMed ID: 22502533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkali Metal Salts with Designable Aryltrifluoroborate Anions.
    Iwasaki K; Yoshii K; Tsuzuki S; Matsumoto H; Tsuda T; Kuwabata S
    J Phys Chem B; 2016 Sep; 120(35):9468-76. PubMed ID: 27510799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.