These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
476 related articles for article (PubMed ID: 31414240)
61. PEGylated chitosan protected silver nanoparticles as water-borne coating for leather with antibacterial property. Liu G; Li K; Luo Q; Wang H; Zhang Z J Colloid Interface Sci; 2017 Mar; 490():642-651. PubMed ID: 27940031 [TBL] [Abstract][Full Text] [Related]
62. TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application. Yuan Y; Ding J; Xu J; Deng J; Guo J J Nanosci Nanotechnol; 2010 Aug; 10(8):4868-74. PubMed ID: 21125821 [TBL] [Abstract][Full Text] [Related]
63. Exploring the antibacterial potential of magnetite/Quince seed mucilage/Ag nanocomposite: Synthesis, characterization, and activity assessment. Gharaati AR; Allafchian A; Karimzadeh F Int J Biol Macromol; 2023 Sep; 249():126120. PubMed ID: 37541468 [TBL] [Abstract][Full Text] [Related]
64. Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Samberg ME; Orndorff PE; Monteiro-Riviere NA Nanotoxicology; 2011 Jun; 5(2):244-53. PubMed ID: 21034371 [TBL] [Abstract][Full Text] [Related]
65. Multifunctional superparamagnetic fe3O4@SiO2 core/shell nanoparticles: design and application for cell imaging. Zhao X; Zhao H; Yuan H; Lan M J Biomed Nanotechnol; 2014 Feb; 10(2):262-70. PubMed ID: 24738334 [TBL] [Abstract][Full Text] [Related]
66. Silver ion loaded 3-aminopropyl trimethoxysilane -modified Fe Saedi S; Shokri M; Priyadarshi R; Rhim JW Colloids Surf B Biointerfaces; 2021 Dec; 208():112085. PubMed ID: 34478956 [TBL] [Abstract][Full Text] [Related]
67. Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles. Tian Y; Qi J; Zhang W; Cai Q; Jiang X ACS Appl Mater Interfaces; 2014 Aug; 6(15):12038-45. PubMed ID: 25050635 [TBL] [Abstract][Full Text] [Related]
68. Sulfhydryl-Modified Fe3O4@SiO2 Core/Shell Nanocomposite: Synthesis and Toxicity Assessment in Vitro. Guo X; Mao F; Wang W; Yang Y; Bai Z ACS Appl Mater Interfaces; 2015 Jul; 7(27):14983-91. PubMed ID: 26083720 [TBL] [Abstract][Full Text] [Related]
70. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Matai I; Sachdev A; Dubey P; Kumar SU; Bhushan B; Gopinath P Colloids Surf B Biointerfaces; 2014 Mar; 115():359-67. PubMed ID: 24412348 [TBL] [Abstract][Full Text] [Related]
71. Preparation and characterization of monodisperse core-shell Fe3O4@SiO2 microspheres and its application for magnetic separation of nucleic acids from E. coli BL21. Ma C; Li C; He N; Wang F; Ma N; Zhang L; Lu Z; Ali Z; Xi Z; Li X; Liang G; Liu H; Deng Y; Xu L; Wang Z J Biomed Nanotechnol; 2012 Dec; 8(6):1000-5. PubMed ID: 23030008 [TBL] [Abstract][Full Text] [Related]
73. Janus silver mesoporous silica nanobullets with synergistic antibacterial functions. Chang ZM; Wang Z; Lu MM; Shao D; Yue J; Yang D; Li MQ; Dong WF Colloids Surf B Biointerfaces; 2017 Sep; 157():199-206. PubMed ID: 28595136 [TBL] [Abstract][Full Text] [Related]
74. Preparation and characterization of SiO₂/CMC/Ag hybrids with antibacterial properties. Rangelova N; Aleksandrov L; Angelova T; Georgieva N; Müller R Carbohydr Polym; 2014 Jan; 101():1166-75. PubMed ID: 24299888 [TBL] [Abstract][Full Text] [Related]
75. Novel Cu@SiO2/bacterial cellulose nanofibers: Preparation and excellent performance in antibacterial activity. Ma B; Huang Y; Zhu C; Chen C; Chen X; Fan M; Sun D Mater Sci Eng C Mater Biol Appl; 2016 May; 62():656-61. PubMed ID: 26952469 [TBL] [Abstract][Full Text] [Related]
76. Enhanced Bactericidal Activity of Silver Thin Films Deposited via Aerosol-Assisted Chemical Vapor Deposition. Ponja SD; Sehmi SK; Allan E; MacRobert AJ; Parkin IP; Carmalt CJ ACS Appl Mater Interfaces; 2015 Dec; 7(51):28616-23. PubMed ID: 26632854 [TBL] [Abstract][Full Text] [Related]
77. Magnetite Nanoparticles-Supported APTES as a Powerful and Recoverable Nanocatalyst for the Preparation of 2-Amino-5,10-dihydro- 5,10-dioxo-4H-benzo[g]chromenes and Tetrahydrobenzo[g]quinoline-5,10- diones. Ghasemzadeh MA; Elyasi Z; Azimi-Nasrabad M; Mirhosseini-Eshkevari B Comb Chem High Throughput Screen; 2017; 20(1):64-76. PubMed ID: 28017132 [TBL] [Abstract][Full Text] [Related]
78. Bioinspired synthesis of polydopamine/Ag nanocomposite particles with antibacterial activities. Wu C; Zhang G; Xia T; Li Z; Zhao K; Deng Z; Guo D; Peng B Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():155-65. PubMed ID: 26117750 [TBL] [Abstract][Full Text] [Related]
79. Antibacterial activity of nanosilver ions and particles. Sotiriou GA; Pratsinis SE Environ Sci Technol; 2010 Jul; 44(14):5649-54. PubMed ID: 20583805 [TBL] [Abstract][Full Text] [Related]
80. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability. Yu X; Cheng G; Zheng SY Sci Rep; 2016 May; 6():25459. PubMed ID: 27147586 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]