These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 31414701)
1. NERChem: adapting NERBio to chemical patents via full-token features and named entity feature with chemical sub-class composition. Tsai RT; Hsiao YC; Lai PT Database (Oxford); 2016 Oct; 2016():. PubMed ID: 31414701 [TBL] [Abstract][Full Text] [Related]
2. Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning. Zhang Y; Xu J; Chen H; Wang J; Wu Y; Prakasam M; Xu H Database (Oxford); 2016; 2016():. PubMed ID: 27087307 [TBL] [Abstract][Full Text] [Related]
3. Chemical entity recognition in patents by combining dictionary-based and statistical approaches. Akhondi SA; Pons E; Afzal Z; van Haagen H; Becker BF; Hettne KM; van Mulligen EM; Kors JA Database (Oxford); 2016; 2016():. PubMed ID: 27141091 [TBL] [Abstract][Full Text] [Related]
4. LSTMVoter: chemical named entity recognition using a conglomerate of sequence labeling tools. Hemati W; Mehler A J Cheminform; 2019 Jan; 11(1):3. PubMed ID: 30631966 [TBL] [Abstract][Full Text] [Related]
5. A neural network approach to chemical and gene/protein entity recognition in patents. Luo L; Yang Z; Yang P; Zhang Y; Wang L; Wang J; Lin H J Cheminform; 2018 Dec; 10(1):65. PubMed ID: 30564940 [TBL] [Abstract][Full Text] [Related]
6. Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations. Munkhdalai T; Li M; Batsuren K; Park HA; Choi NH; Ryu KH J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S9. PubMed ID: 25810780 [TBL] [Abstract][Full Text] [Related]
7. Statistical principle-based approach for gene and protein related object recognition. Lai PT; Huang MS; Yang TH; Hsu WL; Tsai RT J Cheminform; 2018 Dec; 10(1):64. PubMed ID: 30560325 [TBL] [Abstract][Full Text] [Related]
8. The CHEMDNER corpus of chemicals and drugs and its annotation principles. Krallinger M; Rabal O; Leitner F; Vazquez M; Salgado D; Lu Z; Leaman R; Lu Y; Ji D; Lowe DM; Sayle RA; Batista-Navarro RT; Rak R; Huber T; Rocktäschel T; Matos S; Campos D; Tang B; Xu H; Munkhdalai T; Ryu KH; Ramanan SV; Nathan S; Žitnik S; Bajec M; Weber L; Irmer M; Akhondi SA; Kors JA; Xu S; An X; Sikdar UK; Ekbal A; Yoshioka M; Dieb TM; Choi M; Verspoor K; Khabsa M; Giles CL; Liu H; Ravikumar KE; Lamurias A; Couto FM; Dai HJ; Tsai RT; Ata C; Can T; Usié A; Alves R; Segura-Bedmar I; Martínez P; Oyarzabal J; Valencia A J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S2. PubMed ID: 25810773 [TBL] [Abstract][Full Text] [Related]
9. Curatable Named-Entity Recognition Using Semantic Relations. Hsu YY; Kao HY IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):785-92. PubMed ID: 26357317 [TBL] [Abstract][Full Text] [Related]
10. An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition. Luo L; Yang Z; Yang P; Zhang Y; Wang L; Lin H; Wang J Bioinformatics; 2018 Apr; 34(8):1381-1388. PubMed ID: 29186323 [TBL] [Abstract][Full Text] [Related]
11. A CRF-based system for recognizing chemical entity mentions (CEMs) in biomedical literature. Xu S; An X; Zhu L; Zhang Y; Zhang H J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S11. PubMed ID: 25810768 [TBL] [Abstract][Full Text] [Related]
12. Enhancing of chemical compound and drug name recognition using representative tag scheme and fine-grained tokenization. Dai HJ; Lai PT; Chang YC; Tsai RT J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S14. PubMed ID: 25810771 [TBL] [Abstract][Full Text] [Related]
13. Mining chemical patents with an ensemble of open systems. Leaman R; Wei CH; Zou C; Lu Z Database (Oxford); 2016; 2016():. PubMed ID: 27173521 [TBL] [Abstract][Full Text] [Related]
14. A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature. Tang B; Feng Y; Wang X; Wu Y; Zhang Y; Jiang M; Wang J; Xu H J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S8. PubMed ID: 25810779 [TBL] [Abstract][Full Text] [Related]
15. A document processing pipeline for annotating chemical entities in scientific documents. Campos D; Matos S; Oliveira JL J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S7. PubMed ID: 25810778 [TBL] [Abstract][Full Text] [Related]
16. CHEMDNER: The drugs and chemical names extraction challenge. Krallinger M; Leitner F; Rabal O; Vazquez M; Oyarzabal J; Valencia A J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S1. PubMed ID: 25810766 [TBL] [Abstract][Full Text] [Related]
17. Recognition of chemical entities: combining dictionary-based and grammar-based approaches. Akhondi SA; Hettne KM; van der Horst E; van Mulligen EM; Kors JA J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S10. PubMed ID: 25810767 [TBL] [Abstract][Full Text] [Related]
18. CHEMDNER system with mixed conditional random fields and multi-scale word clustering. Lu Y; Ji D; Yao X; Wei X; Liang X J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S4. PubMed ID: 25810775 [TBL] [Abstract][Full Text] [Related]
19. Chemlistem: chemical named entity recognition using recurrent neural networks. Corbett P; Boyle J J Cheminform; 2018 Dec; 10(1):59. PubMed ID: 30523437 [TBL] [Abstract][Full Text] [Related]
20. NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition. Tsai RT; Sung CL; Dai HJ; Hung HC; Sung TY; Hsu WL BMC Bioinformatics; 2006 Dec; 7 Suppl 5(Suppl 5):S11. PubMed ID: 17254295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]