These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31415239)

  • 41. Conversion of food processing wastes to biofuel using clostridia.
    Abd-Alla MH; Zohri AA; El-Enany AE; Ali SM
    Anaerobe; 2017 Dec; 48():135-143. PubMed ID: 28823884
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced biobutanol production with high yield from crude glycerol by acetone uncoupled Clostridium sp. strain CT7.
    Xin F; Chen T; Jiang Y; Lu J; Dong W; Zhang W; Ma J; Zhang M; Jiang M
    Bioresour Technol; 2017 Nov; 244(Pt 1):575-581. PubMed ID: 28803108
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of 1,3-propanediol production in fermentation of glycerol by Clostridium pasteurianum.
    Johnson EE; Rehmann L
    Bioresour Technol; 2016 Jun; 209():1-7. PubMed ID: 26946434
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An analysis of net energy production and feedstock availability for biobutanol and bioethanol.
    Swana J; Yang Y; Behnam M; Thompson R
    Bioresour Technol; 2011 Jan; 102(2):2112-7. PubMed ID: 20843683
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biobutanol production from corn stover hydrolysate pretreated with recycled ionic liquid by Clostridium saccharobutylicum DSM 13864.
    Ding JC; Xu GC; Han RZ; Ni Y
    Bioresour Technol; 2016 Jan; 199():228-234. PubMed ID: 26318847
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective.
    Evangelisti S; Tagliaferri C; Clift R; Lettieri P; Taylor R; Chapman C
    Waste Manag; 2015 Sep; 43():485-96. PubMed ID: 26116008
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective separation of biobutanol from acetone-butanol-ethanol fermentation broth by means of sorption methodology based on a novel macroporous resin.
    Lin X; Wu J; Jin X; Fan J; Li R; Wen Q; Qian W; Liu D; Chen X; Chen Y; Xie J; Bai J; Ying H
    Biotechnol Prog; 2012 Jul; 28(4):962-72. PubMed ID: 22508691
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Environmental assessment of food waste valorization in producing biogas for various types of energy use based on LCA approach.
    Woon KS; Lo IM; Chiu SL; Yan DY
    Waste Manag; 2016 Apr; 50():290-9. PubMed ID: 26923298
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Strain improvement and process development for biobutanol production.
    Kharkwal S; Karimi IA; Chang MW; Lee DY
    Recent Pat Biotechnol; 2009; 3(3):202-10. PubMed ID: 19747149
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fine grain separation for the production of biomass fuel from mixed municipal solid waste.
    Giani H; Borchers B; Kaufeld S; Feil A; Pretz T
    Waste Manag; 2016 Jan; 47(Pt B):174-83. PubMed ID: 26272710
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Felled oil palm trunk as a renewable source for biobutanol production by Clostridium spp.
    Komonkiat I; Cheirsilp B
    Bioresour Technol; 2013 Oct; 146():200-207. PubMed ID: 23933028
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in global trends in food waste composting: Research challenges and opportunities.
    Awasthi SK; Sarsaiya S; Awasthi MK; Liu T; Zhao J; Kumar S; Zhang Z
    Bioresour Technol; 2020 Mar; 299():122555. PubMed ID: 31866141
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Potential biofuel additive from renewable sources--Kinetic study of formation of butyl acetate by heterogeneously catalyzed transesterification of ethyl acetate with butanol.
    Ali SH; Al-Rashed O; Azeez FA; Merchant SQ
    Bioresour Technol; 2011 Nov; 102(21):10094-103. PubMed ID: 21908187
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation and molecular characterization of butanol tolerant bacterial strains for improved biobutanol production.
    Ravindar J; Arulselvi I; Elangovan N
    J Environ Biol; 2014 Nov; 35(6):1131-6. PubMed ID: 25522516
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Production of 2-butanol through meso-2,3-butanediol consumption in lactic acid bacteria.
    Ghiaci P; Lameiras F; Norbeck J; Larsson C
    FEMS Microbiol Lett; 2014 Nov; 360(1):70-5. PubMed ID: 25175699
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reducing food waste in residential complexes using a pilot-scale on-site system.
    Jeon D; Chung K; Shin J; Min Park C; Gu Shin S; Mo Kim Y
    Bioresour Technol; 2020 Sep; 311():123497. PubMed ID: 32408195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Butanol production by Saccharomyces cerevisiae: perspectives, strategies and challenges.
    Azambuja SPH; Goldbeck R
    World J Microbiol Biotechnol; 2020 Mar; 36(3):48. PubMed ID: 32152786
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microbial production of lactic acid from food waste: Latest advances, limits, and perspectives.
    Song L; Yang D; Liu R; Liu S; Dai L; Dai X
    Bioresour Technol; 2022 Feb; 345():126052. PubMed ID: 34592459
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potential for energy generation from anaerobic digestion of food waste in Australia.
    Lou XF; Nair J; Ho G
    Waste Manag Res; 2013 Mar; 31(3):283-94. PubMed ID: 23381970
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct conversion of xylan to butanol by a wild-type Clostridium species strain G117.
    Yan Y; Basu A; Li T; He J
    Biotechnol Bioeng; 2016 Aug; 113(8):1702-10. PubMed ID: 26803924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.