These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31415393)

  • 1. Identifying crucial genes for prognosis in septic patients: Gene integration study based on PRISMA guidelines.
    Hu Y; Zhong W; Chen M; Zhang Q
    Medicine (Baltimore); 2019 Aug; 98(33):e16807. PubMed ID: 31415393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinformatics Analysis for Multiple Gene Expression Profiles in Sepsis.
    Zhai J; Qi A; Zhang Y; Jiao L; Liu Y; Shou S
    Med Sci Monit; 2020 Apr; 26():e920818. PubMed ID: 32280132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinformatics Analysis of Gene Expression Profiles for Risk Prediction in Patients with Septic Shock.
    Hu Y; Cheng L; Zhong W; Chen M; Zhang Q
    Med Sci Monit; 2019 Dec; 25():9563-9571. PubMed ID: 31838482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinformatic analysis of pivotal genes associated with septic shock.
    Liu SY; Zhang L; Zhang Y; Zhen Y; Wu YF
    J Biol Regul Homeost Agents; 2017; 31(4):935-941. PubMed ID: 29254296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of key genes related to the prognosis of mouse sepsis.
    Chen M; Chen X; Hu Y; Cai X
    Biosci Rep; 2020 Oct; 40(10):. PubMed ID: 33015708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the prognostic and diagnostic value of lactylation-related genes in sepsis.
    Li S; Shen Y; Wang C; Yang J; Chen M; Hu Y
    Sci Rep; 2024 Oct; 14(1):23130. PubMed ID: 39367086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of key pathogenic genes of sepsis based on the Gene Expression Omnibus database.
    Lu X; Xue L; Sun W; Ye J; Zhu Z; Mei H
    Mol Med Rep; 2018 Feb; 17(2):3042-3054. PubMed ID: 29257295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR‑148 family members are putative biomarkers for sepsis.
    Dong L; Li H; Zhang S; Yang G
    Mol Med Rep; 2019 Jun; 19(6):5133-5141. PubMed ID: 31059023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
    Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R
    Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global transcriptional regulation of STAT3- and MYC-mediated sepsis-induced ARDS.
    Zhang J; Luo Y; Wang X; Zhu J; Li Q; Feng J; He D; Zhong Z; Zheng X; Lu J; Zou D; Luo J
    Ther Adv Respir Dis; 2019; 13():1753466619879840. PubMed ID: 31566109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Biomarkers Associated with Septic Cardiomyopathy Based on Bioinformatics Analyses.
    Chen M; Kong C; Zheng Z; Li Y
    J Comput Biol; 2020 Jan; 27(1):69-80. PubMed ID: 31424269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Sepsis Markers and Pathogenesis Based on Gene Differential Expression and Protein Interaction Network.
    Liang J; Wu W; Wang X; Wu W; Chen S; Jiang M
    J Healthc Eng; 2022; 2022():6878495. PubMed ID: 35190763
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Jiang Y; Miao Q; Hu L; Zhou T; Hu Y; Tian Y
    Comb Chem High Throughput Screen; 2022; 25(10):1722-1730. PubMed ID: 34397323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatics Analysis for Identifying Pertinent Pathways and Genes in Sepsis.
    Li Y; Zhang H; Shao J; Chen J; Zhang T; Meng X; Zong R; Jin G; Wu F
    Comput Math Methods Med; 2021; 2021():2085173. PubMed ID: 34760021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of risk factors for sepsis-associated mortality by gene expression profiling analysis.
    Qi Y; Chen X; Wu N; Ma C; Cui X; Liu Z
    Mol Med Rep; 2018 Apr; 17(4):5350-5355. PubMed ID: 29393415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microarray data analysis to identify crucial genes regulated by CEBPB in human SNB19 glioma cells.
    Du C; Pan P; Jiang Y; Zhang Q; Bao J; Liu C
    World J Surg Oncol; 2016 Oct; 14(1):258. PubMed ID: 27716259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinformatics analysis of transcription profiling of solid pseudopapillary neoplasm of the pancreas.
    Zhang Y; Han X; Wu H; Zhou Y
    Mol Med Rep; 2017 Aug; 16(2):1635-1642. PubMed ID: 28627654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Potential Biomarkers for Thyroid Cancer Using Bioinformatics Strategy: A Study Based on GEO Datasets.
    Shen Y; Dong S; Liu J; Zhang L; Zhang J; Zhou H; Dong W
    Biomed Res Int; 2020; 2020():9710421. PubMed ID: 32337286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of differentially expressed genes between triple and non-triple-negative breast cancer using bioinformatics analysis.
    Zhai Q; Li H; Sun L; Yuan Y; Wang X
    Breast Cancer; 2019 Nov; 26(6):784-791. PubMed ID: 31197620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of novel genes associated with a poor prognosis in pancreatic ductal adenocarcinoma via a bioinformatics analysis.
    Zhou J; Hui X; Mao Y; Fan L
    Biosci Rep; 2019 Aug; 39(8):. PubMed ID: 31311829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.