These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 31415812)
21. Xenoestrogen action in prostate cancer: pleiotropic effects dependent on androgen receptor status. Wetherill YB; Fisher NL; Staubach A; Danielsen M; de Vere White RW; Knudsen KE Cancer Res; 2005 Jan; 65(1):54-65. PubMed ID: 15665279 [TBL] [Abstract][Full Text] [Related]
22. Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: new data and a brief review. Bonefeld-Jørgensen EC; Long M; Hofmeister MV; Vinggaard AM Environ Health Perspect; 2007 Dec; 115 Suppl 1(Suppl 1):69-76. PubMed ID: 18174953 [TBL] [Abstract][Full Text] [Related]
23. Screening of the Antagonistic Activity of Potential Bisphenol A Alternatives toward the Androgen Receptor Using Machine Learning and Molecular Dynamics Simulation. Yang Z; Wang L; Yang Y; Pang X; Sun Y; Liang Y; Cao H Environ Sci Technol; 2024 Feb; 58(6):2817-2829. PubMed ID: 38291630 [TBL] [Abstract][Full Text] [Related]
24. Structure-based discovery of the endocrine disrupting effects of hydraulic fracturing chemicals as novel androgen receptor antagonists. Tachachartvanich P; Azhagiya Singam ER; Durkin KA; Smith MT; La Merrill MA Chemosphere; 2020 Oct; 257():127178. PubMed ID: 32505947 [TBL] [Abstract][Full Text] [Related]
25. Development of two androgen receptor assays using adenoviral transduction of MMTV-luc reporter and/or hAR for endocrine screening. Hartig PC; Bobseine KL; Britt BH; Cardon MC; Lambright CR; Wilson VS; Gray LE Toxicol Sci; 2002 Mar; 66(1):82-90. PubMed ID: 11861975 [TBL] [Abstract][Full Text] [Related]
26. Dynamics of intracellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Tyagi RK; Lavrovsky Y; Ahn SC; Song CS; Chatterjee B; Roy AK Mol Endocrinol; 2000 Aug; 14(8):1162-74. PubMed ID: 10935541 [TBL] [Abstract][Full Text] [Related]
27. Mechanism underlying the retarded nuclear translocation of androgen receptor splice variants. Liu Y; Wang Y; Wang F; Pan J; Xu J; Li J; Zhou C; Ding G; Wu Y; Liu X; Sheng J; Huang H Sci China Life Sci; 2019 Feb; 62(2):257-267. PubMed ID: 30267260 [TBL] [Abstract][Full Text] [Related]
28. Oral exposure to low-dose bisphenol A induces hyperplasia of dorsolateral prostate and upregulates EGFR expression in adult Wu S; Huang D; Su X; Yan H; Wu J; Sun Z Toxicol Ind Health; 2019 Oct; 35(10):647-659. PubMed ID: 31771501 [TBL] [Abstract][Full Text] [Related]
29. In silico binding of 4,4'-bisphenols predicts in vitro estrogenic and antiandrogenic activity. Conroy-Ben O; Garcia I; Teske SS Environ Toxicol; 2018 May; 33(5):569-578. PubMed ID: 29392883 [TBL] [Abstract][Full Text] [Related]
30. High-content positional biosensor screening assay for compounds to prevent or disrupt androgen receptor and transcriptional intermediary factor 2 protein-protein interactions. Hua Y; Shun TY; Strock CJ; Johnston PA Assay Drug Dev Technol; 2014 Sep; 12(7):395-418. PubMed ID: 25181412 [TBL] [Abstract][Full Text] [Related]
31. Bisphenol-A inhibits improvement of testosterone in anxiety- and depression-like behaviors in gonadectomied male mice. Liang Y; Li J; Jin T; Gu T; Zhu Q; Hu Y; Yang Y; Li J; Wu D; Jiang K; Xu X Horm Behav; 2018 Jun; 102():129-138. PubMed ID: 29778459 [TBL] [Abstract][Full Text] [Related]
32. Anti-androgen effects of cypermethrin on the amino- and carboxyl-terminal interaction of the androgen receptor. Hu JX; Li YF; Pan C; Zhang JP; Wang HM; Li J; Xu LC Toxicology; 2012 Feb; 292(2-3):99-104. PubMed ID: 22172556 [TBL] [Abstract][Full Text] [Related]
33. Classifying chemical mode of action using gene networks and machine learning: a case study with the herbicide linuron. Ornostay A; Cowie AM; Hindle M; Baker CJ; Martyniuk CJ Comp Biochem Physiol Part D Genomics Proteomics; 2013 Dec; 8(4):263-74. PubMed ID: 24013142 [TBL] [Abstract][Full Text] [Related]
34. Identification of a group of brominated flame retardants as novel androgen receptor antagonists and potential neuronal and endocrine disrupters. Kharlyngdoh JB; Pradhan A; Asnake S; Walstad A; Ivarsson P; Olsson PE Environ Int; 2015 Jan; 74():60-70. PubMed ID: 25454221 [TBL] [Abstract][Full Text] [Related]
35. Machine Learning Consensus To Predict the Binding to the Androgen Receptor within the CoMPARA Project. Grisoni F; Consonni V; Ballabio D J Chem Inf Model; 2019 May; 59(5):1839-1848. PubMed ID: 30668916 [TBL] [Abstract][Full Text] [Related]
36. Profiling of bisphenol A and eight its analogues on transcriptional activity via human nuclear receptors. Kojima H; Takeuchi S; Sanoh S; Okuda K; Kitamura S; Uramaru N; Sugihara K; Yoshinari K Toxicology; 2019 Feb; 413():48-55. PubMed ID: 30582956 [TBL] [Abstract][Full Text] [Related]
37. Structural bisphenol analogues differentially target steroidogenesis in murine MA-10 Leydig cells as well as the glucocorticoid receptor. Roelofs MJ; van den Berg M; Bovee TF; Piersma AH; van Duursen MB Toxicology; 2015 Mar; 329():10-20. PubMed ID: 25576683 [TBL] [Abstract][Full Text] [Related]
38. The molecular mechanisms of action of the endocrine disrupting chemical bisphenol A in the development of cancer. Shafei A; Ramzy MM; Hegazy AI; Husseny AK; El-Hadary UG; Taha MM; Mosa AA Gene; 2018 Mar; 647():235-243. PubMed ID: 29317319 [TBL] [Abstract][Full Text] [Related]
39. Bisphenol A (BPA) modulates the expression of endocrine and stress response genes in the freshwater snail Physa acuta. Morales M; Martínez-Paz P; Sánchez-Argüello P; Morcillo G; Martínez-Guitarte JL Ecotoxicol Environ Saf; 2018 May; 152():132-138. PubMed ID: 29407779 [TBL] [Abstract][Full Text] [Related]
40. Neural androgen receptor regulation: effects of androgen and antiandrogen. Lu S; Simon NG; Wang Y; Hu S J Neurobiol; 1999 Dec; 41(4):505-12. PubMed ID: 10590174 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]